[1] 翟玉强. 智能交通系统中的环境感知算法研究[D]. 成都: 电子科技大学, 2016.
ZHAI Y Q. Research on environment-aware algorithms in intelligent transportation systems[D]. Chengdu: University of Electronic Science and Technology, 2016.
[2] 胡皓, 郭放, 刘钊. 改进YOLOX-S模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101.
[3] 苏俊楷, 段先华, 叶赵兵. 改进YOLOv5算法的玉米病害检测研究[J]. 计算机科学与探索, 2023, 17(4): 933-941.
SU J K, DUAN X H, YE Z B. Research on corn disease detection based on improved YOLOv5 algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 933-941.
[4] 赵振兵, 王帆帆, 刘良帅, 等. 基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J]. 电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Transmission line image fitting detection method based on attention feature fusion YOLOv5 model[J]. Electrical Measurement & Instrumentation, 2023, 60(3): 145-152.
[5] VAN B J, O’BRIEN M, GRUYER D, et al. Autonomous vehicle perception: the technology of today and tomorrow[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 384-406.
[6] 王战古, 绍金菊, 高松, 等. 基于多传感器融合的前方车辆识别方法研究[J]. 广西大学学报 (自然科学版), 2017, 42(2): 419-428.
WANG Z G, SHAO J J, GAO S, et al. Research on forward vehicle recognition method based on multi-sensor fusion[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(2): 419-428.
[7] 王海, 徐岩松, 蔡英凤, 等. 基于多传感器融合的智能汽车多目标检测技术综述[J]. 汽车安全与节能学报, 2021, 12(4): 440-455.
WANG H, XU Y S, CAI Y F, et al. A review of multi-sensor fusion-based multi-target detection technology for intelligent vehicles[J]. Journal of Automotive Safety and Energy Conservation, 2021, 12(4): 440-455.
[8] SU P, MORRIS D, RADHA H. CLOCs: camera-LiDAR object candidates fusion for 3D object detection[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 10386-10393.
[9] YANG Z T, SUN Y N, LIU S, et al. IPOD: intensive point-based object detector for point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 972-980.
[10] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the Neural Information Processing Systems, 2017: 5099-5108.
[11] QI C R, LIU W, WU C X, et al. Frustum pointnets for 3D object detection from RGB-D data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 918-927.
[12] QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 77-85.
[13] VORA S, LANG A H, HELOU B, et al. PointPainting: sequential fusion for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4604-4612.
[14] WANG C W, MA C, ZHU M, et al. PointAugmenting: cross-modal augmentation for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11794-11803.
[15] YOO J H, KIM Y, KIM J, et al. 3D-CVF: generating joint camera and lidar features using cross-view spatial feature fusion for 3D object detection[C]//Proceedings of the European Conference on Computer Vision, 2020: 720-736.
[16] CHEN X Z, MA H M, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 6526-6534.
[17] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of the IEEE/ RSJ International Conference on Intelligent Robots and Systems, 2018: 1-8.
[18] 李文平, 袁强, 陈璐, 等. 基于雷达点云与图像数据的三维目标检测方法[J]. 电光与控制, 2021, 28(10): 110-115.
LI W P, YUAN Q, CHEN L, et al. 3D target detection method based on radar point cloud and image data[J]. Journal of Optoelectronics and Control, 2021, 28(10): 110-115.
[19] PHILION J, FIDLER S. Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[C]//Proceedings of the European Conference on Computer Vision, 2020: 194-210.
[20] READING C, HARAKEH A, CHAE J, et al. Categorical depth distribution network for monocular 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8551-8560.
[21] FU H, GONG M M, WANG C H, et al. Deep ordinal regression network for monocular depth estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2002-2011.
[22] TANG Y L, DORN S, SAVANI C. Center3D: center-based monocular 3D object detection with joint depth understanding[C]//Proceedings of the German Conference on Pattern Recognition, 2020: 289-302.
[23] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
[24] YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337-3354.
[25] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12689-12697.
[26] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[27] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE/Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2018: 318-327.
[28] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the kitti dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[29] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the International Conference on Learning Representations, 2014: 6635-6648. |