[1] IEA. Technology roadmap-energy storage[R/OL]. (2014-09)[2022-12-29]. https://www.iea.org/reports/technology-roadmap-energy-storage.
[2] FOLEY A M, LEAHY P G, MARVUGLIA A, et al. Current methods and advances in forecasting of wind power generation[J]. Renewable Energy, 2012, 37(1): 1-8.
[3] ZENG J, WEI Q. Short-term solar power prediction using a support vector machine[J]. Renewable Energy, 2013, 52(4): 118-127.
[4] ZAGOURAS A, PEDRO H, COIMBRA C. On the role of lagged exogenous variables and spatio-temporal correlations in improving the accuracy of solar forecasting methods[J]. Renewable Energy, 2015, 78: 203-218.
[5] VIDAL A, KRISTJANPOLLER W. Gold volatility prediction using a CNN-LSTM approach[J]. Expert Systems with Applications, 2020, 157: 113481.
[6] XIE P, LI T, LIU J, et al. Urban flow prediction from spatiotemporal data using machine learning: a survey[J]. Information Fusion, 2020, 59: 1-12.
[7] AZARBONYAD H, DEHGHANI M, MARX M, et al. Learning to rank for multi-label text classification: combining different sources of information[J]. Natural Language Engineering, 2020, 27(1): 1-23.
[8] YU Y, CAO J, ZHU J. An LSTM short-term solar irradiance forecasting under complicated weather conditions[J]. IEEE Access, 2019, 7: 145651-145666.
[9] SETHI R, KLEISSL J. Comparison of short-term load forecasting techniques[C]//2020 IEEE Conference on Technologies for Sustainability (SusTech), 2020.
[10] WU W, LIAO W, MIAO J, et al. Using gated recurrent unit network to forecast short-term load considering impact of electricity price[J]. Energy Procedia, 2019, 158: 3369-3374.
[11] TZOVARAS D. Benchmark comparison of analytical, data-based and hybrid models for multi-step short-term photovoltaic power generation forecasting[J]. Energies, 2020, 13(22): 5978.
[12] ABDEL-NASSER M. Accurate photovoltaic power forecasting models using deep LSTM-RNN[J]. Neural Computing & Applications, 2019, 31(7): 2727-2740.
[13] WU H, XU J, WANG J, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]//Advances in Neural Information Processing Systems, 2021: 22419-22430.
[14] 智能电网调度控制系统技术规范 第2部分: 术语: GB/T 33590.2-2017[S].2017.
Techaical specification of smart grid operation and control systems. Part 2: Terminology: GB/T 33590.2-2017[S].2017.
[15] LUO X, DING H, TANG M, et al. Attention mechanism with BERT for content annotation and categorization of pregnancy-related questions on a community Q&A site[C]//2020 IEEE International Conference on Bioinformatics and Biomedicine, 2020.
[16] ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 11106-11115.
[17] CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
[18] LAI G, CHANG W C, YANG Y, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval, 2018.
[19] KHAJEPOUR S, AMERI M. Techno-economic analysis of a hybrid solar Thermal-PV power plant[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100857.
[20] KATOH K, MISAWA K, KUMA K, et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform[J]. Nucleic Acids Research, 2002, 30(14): 3059-3066.
[21] DKA solar centre[DB/OL]. (2020-09-28)[2022-12-29]. http://dkasolarcentre.com. |