[1] WANG L, LIU X, MA J, et al. Real-time steel surface defect detection with improved multi-scale YOLO-v5[J]. Processes, 2023, 11(5): 1357.
[2] HUA S, YU S, HONG X, et al. Research on efficient detection method of foreign objects on transmission lines based on improved YOLOv4 network[J]. Journal of Physics: Conference Series, 2022, 2404(1): 012040.
[3] YU Q H, WU Q, LIU H Q. Research on x-ray contraband detection and overlapping target detection based on convolutional network[C]//2022 4th International Conference on Frontiers Technology of Information and Computer, Qingdao, China, 2022: 736-741.
[4] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 6517-6525.
[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[7] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[8] SHAOQING R, ROSS G, JIAN S. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017: 1137-1149.
[9] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[J]. arXiv:2005.12872, 2020.
[10] CHAO Z, XIN S, XI Y, et al. RDD-YOLO: a modified YOLO for detection of steel surface defects[J]. Measurement, 2023, 214: 112776.
[11] 崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J/OL]. 图学学报, 2023: 1-15[2023-10-20]. http://kns.cnki.net/kcms/detail/10.1034.t.20231019.1107.002.html.
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J/OL]. Journal of Graphics, 2023: 1-15[2023-10-20]. http://kns.cnki.net/kcms/detail/10.1034.t.20231019.1107.002.html.
[12] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[13] 侯玥, 王开宇, 金顺福. 一种基于YOLOv5的小样本目标检测模型[J]. 燕山大学学报, 2023, 47(1): 64-72.
HOU Y, WANG K Y, JIN S F. A few-shot object detection model based on YOLOv5[J]. Journal of Yanshan University, 2023, 47(1): 64-72.
[14] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[15] 赵睿, 刘辉, 刘沛霖, 等. 基于改进YOLOv5s的安全帽检测算法[J]. 北京航空航天大学学报, 2023, 49(8): 2050-2061.
ZHAO R, LIU H, LIU P L, et al. Safety helmet detection algorithm based on improved YOLOv5s[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 2050-2061.
[16] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[17] TERRANCE D, GRAHAM W. Improved regularization of convolutional neural networks with cutout[J]. arXiv:1708. 04552, 2017.
[18] YANG G, WANG J, NIE Z, et al. A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention[J]. Agronomy, 2023, 13(7): 1824.
[19] 窦智, 胡晨光, 李庆华, 等. 改进YOLOv7的小样本钢板表面缺陷检测算法[J]. 计算机工程与应用, 2023, 59(23): 283-292.
DOU Z, HU C G, LI Q H, et al. Improved YOLOv7 algorithm for small sample steel plate surface defect detection[J]. Computer Engineering and Applications, 2023, 59(23): 283-292.
[20] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[J]. arXiv:1905.02244, 2019.
[21] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 1577-1586.
[22] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[23] JIN H X, TAO Z, YUN T Y, et al. Context augmentation and feature refinement network for tiny object detection[C]// ICLR 2022 Conference Withdrawn Submission, 2022.
[24] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 11531-11539.
[25] ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 6687-6696.
[26] 刘卫光, 刘东, 王璐. 可变形卷积网络研究综述[J]. 计算机科学与探索, 2023, 17(7): 1549-1564.
LIU W G, LIU D, WANG L. Survey of deformable convolutional networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1549-1564.
[27] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020.
[28] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[29] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[30] GLENN J, CHAURASIA A, ALEX S, et al. Ultralytics/yolov5:V7.0-YOLOV5 SOTA realtime instance segmention[DB]. Zenodo, 2022.
[31] LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[32] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 7464-7475.
[33] LV W Y, XU S L, ZHAO Y, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023. |