[1] 易玉枚, 武甜恬, 杨梓杰, 等. 突发火灾高校大学生疏散行为及心理调查研究[J]. 安全, 2021, 42(10): 12-17.
YI Y M, WU T T, YANG Z J, et al. Investigation on evacuation behavior and psychology of students in colleges and universities under fire emergency[J]. Safety and Security, 2021, 42(10): 12-17.
[2] 叶超. 大型商业综合体火灾特点分析及防火对策[J]. 今日消防, 2021, 6(10): 136-138.
YE C. Analysis on the fire features of large-scale commercial complex and fire protection measures[J]. Firefighting Today, 2021, 6(10): 136-138.
[3] 李珺, 段钰蓉, 郝丽艳, 等. 混合优化算法求解同时送取货车辆路径问题[J]. 计算机科学与探索, 2022, 16(7): 1623-1632.
LI J, DUAN Y R, HAO L Y, et al. Hybrid optimization algorithm for vehicle routing problem with simultaneous delivery-pickup[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1623-1632.
[4] 李丹. 改进群智能优化算法的海上物流配送路径优化方法[J]. 舰船科学技术, 2020, 42(16): 184-186.
LI D. Optimization method of marine logistics distribution path based on improved swarm intelligence optimization algorithm[J]. Ship Science and Technology, 2020, 42(16): 184-186.
[5] 周敬东, 高伟周, 杨文广, 等. 基于改进蚁群算法的移动机器人路径规划[J]. 科学技术与工程, 2022, 22(28): 12484-12490.
ZHOU J D, GAO W Z, YANG W G, et al. Path planning of mobile robot based on improved ant colony algorithm[J]. Science Technology and Engineering, 2022, 22(28): 12484-12490.
[6] 翟志波, 戴玉森, 周鹏鹏,等. 基于改进蚁群算法的移动机器人路径规划[J]. 组合机床与自动化加工技术, 2023(4): 5-9.
ZHAI Z B, DAI Y S, ZHOU P P, et al. Path planning of mobile robot based on improved ant colony algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023(4): 5-9.
[7] 霍非舟, 高帅云, 魏云飞,等. 改进蚁群算法的拥堵环境疏散路径规划研究[J]. 计算机工程与应用, 2023, 59(11): 263-271.
HUO F Z, GAO S Y, WEI Y F, et al. Research on evacuation path planning in congested environment with improved ant colony algorithm[J]. Computer Engineering and Applications, 2023, 59(11): 263-271.
[8] GAO P, ZHOU L, ZHAO X, et al. Research on ship collision avoidance path planning based on modified potential field ant colony algorithm[J]. Ocean & Coastal Management, 2023, 38(3): 612-620.
[9] 郑延斌, 安德宇, 李娜, 等. 一种应用于火灾环境路径规划的蚂蚁群算法[J]. 山西大学学报 (自然科学版), 2017, 40(4): 690-701.
ZHENG Y B, AN D Y, LI N et al. An colony algorithm for path planning in fire environment[J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(4): 690-701.
[10] 张苏英, 郭宝樑, 陈灵芝, 等. 双向蚁群算法的智能消防疏散图路径规划[J]. 计算机工程与应用, 2021, 57(14): 259-266.
ZHANG S Y, GUO B L, CHEN L Z, et al. Path planning of intelligent fire evacuation map based on bidirectional ant colony algorithm[J]. Computer Engineering and Applications,2021,57(14):259-266.
[11] 傅军栋, 刘业辉, 李江辉. 基于蚁群算法的火灾动态疏散[J]. 华东交通大学学报, 2017, 34(3): 118-124.
FU J D, LIU Y H, LI J H. Dynamic fire evacuation based on ant colony algorithm[J]. Journal of East China Jiaotong University, 2017, 34(3): 118-124.
[12] XU L, HUANG K, LIU J P, et al. Intelligent planning of fire evacuation routes using an improved ant colony optimization algorithm[J]. Journal of Building, 2022, 61: 105208.
[13] 赵江, 孟晨阳, 王晓博, 等. 特征点提取下的AGV栅格法建模与分析[J]. 计算机工程与应用, 2022, 58(8): 156-167.
ZHAO J, MENG C Y, WANG X B, et al. Modeling and analysis of AGV grid method based on feature point extraction[J]. Computer Engineering and Applications, 2022, 58(8): 156-167.
[14] DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29-41.
[15] MIKE J A. Evaluating the early development of smoke hazard from fires in large spaces[J]. Engineering, Environmental Science, 2000, 106(1): 627-636.
[16] 朱书敏. 基于火灾双区模型的建筑人员疏散复合模拟研究[D]. 长沙: 中南大学, 2010.
ZHU S M. Simulation of personnel evacuation based on a two-zone building fire model[D]. Changsha: Central South University, 2010.
[17] 贾世龙, 綦韦, 李畅. 基于PyroSim的老年公寓火灾烟气运动规律模拟[J]. 沈阳建筑大学学报 (自然科学版), 2023, 39(5): 907-914.
JIA S L, QI W, LI C. Simulation of fire smoke movement law in senior apartment based on PyroSim[J]. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(5): 907-914.
[18] 曹祥红, 杜薇, 魏晓鸽, 等. 一种用于火灾疏散路径动态规划的算法[J]. 消防科学与技术, 2022, 41(9): 1237-1242.
CAO X H, DU W, WEI X G, et al. An algorithm for fire evacuation path dynamic planning[J]. Fire Science and Technology, 2022, 41(9): 1237-1242.
[19] 陈继清, 莫荣现, 谭成志, 等. 增加方向性信息素的改进蚁群路径规划算法[J]. 现代电子技术, 2022, 45(10): 154-159.
CHEN J Q, MO R X, TANG C Z, et al. Modified ant colony path planning algorithm adding directional pheromone[J]. Modern Electronics Technique, 2022, 45(10): 154-159.
[20] 王培崇. 人工鱼群算法研究综述[J]. 中国民航飞行学院学报, 2013, 24(4): 22-26.
WANG P C. Overview of artificial fish swarm algorithm [J]. Journal of Civil Aviation Flight University of China, 2013, 24(4): 22-26.
[21] 惠晓滨, 郭庆, 吴娉娉, 等. 一种改进的狼群算法[J]. 控制与决策, 2017, 32(7): 1163-1172.
HUI X B, GUO Q, WU P P, et al. An improved wolf pack algorithm[J]. Control and Decision, 2017, 32(7): 1163-1172.
[22] 赵晓妍, 宋威. 聚集度指标引导的注意力学习粒子群优化算法[J]. 计算机科学与探索, 2023, 17(8): 1852-1866.
ZHAO X Y, SONG W. Attention learning particle swarm optimization algorithm guided by aggregation indicator[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1852-1866.
[23] 王洪铃, 谭功全, 李静, 等. 改进麻雀搜索算法的AGV路径规划[J]. 无线电工程, 2023, 53(8): 1917-1924.
WANG H L, TAN G Q, LI J, et al. Path planning of automated guided vehicle based on improved sparrow search algorithm[J]. Radio Engineering, 2023, 53(8): 1917-1924. |