[1] 柳恩涵, 张锐, 赵硕, 等. 一种基于视频预测的红外行人目标跟踪方法[J].哈尔滨工业大学学报, 2020, 52(10): 192-200.
LIU E H, ZHANG R, ZHAO S, et al. Infrared pedestrian target tracking method based on video prediction[J]. Journal of Harbin Institute of Technology, 2020, 52(10): 192-200.
[2] YU E, LI Z, HAN S, et al. RelationTrack: relation-aware multiple object tracking with decoupled representation[J]. IEEE Transactions on Multimedia, 2023, 25: 2686-2697.
[3] TAN C, LI C, HE D, et al. Towards real-time tracking and counting of seedlings with a one-stage detector and optical flow[J]. Computers and Electronics in Agriculture, 2022, 193: 106683.
[4] ZHOU X, YIN T, KOLTUN V, et al. Global tracking transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8771-8780.
[5] BRASó G, LEAL-TAIXé L. Learning a neural solver for multiple object tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6247-6257.
[6] 陈璠, 彭力.多层级重叠条纹特征融合的行人重识别[J].计算机科学与探索, 2021, 15(9): 1753-1761.
CHEN F, PENG L. Person re-identification based on multi-level feature fusion with overlapping stripes[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1753-1761.
[7] 李杰.结合注意力和纹理特征增强的行人再识别[J].计算机科学与探索, 2022, 16(3): 661-668.
LI J. Attention and texture feature enhancement for person re-identification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 661-668.
[8] TANG S, ANDRILUKA M, ANDRES B, et al. Multiple people tracking by lifted multicut and person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3539-3548.
[9] SRIDHAR V H, ROCHE D G, GINGINS S. Tracktor: image-based automated tracking of animal movement and behaviour[J]. Methods in Ecology and Evolution, 2019, 10(6): 815-820.
[10] WANG L, XU L, KIM M Y, et al. Online multiple object tracking via flow and convolutional features[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, 2017: 3630-3634.
[11] FERNANDO T, DENMAN S, SRIDHARAN S, et al. Tracking by prediction: a deep generative model for mutli-person localisation and tracking[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, 2018: 1122-1132.
[12] ZHAO D, FU H, XIAO L, et al. Multi-object tracking with correlation filter for autonomous vehicle[J]. Sensors, 2018, 18(7): 2004.
[13] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision, 2016: 850-865.
[14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[15] JACOB D, CHANG M, LEE K. Bert: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[16] LIN H, CHENG X, WU X, et al. Cat: cross attention in vision transformer[C]//Proceedings of the 2022 IEEE International Conference on Multimedia and Expo, 2022: 1-6.
[17] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666.
[18] AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[J]. arXiv:2206.14651, 2022.
[19] CHU P, FAN H, TAN C C, et al. Online multi-object tracking with instance-aware tracker and dynamic model refreshment[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, 2019: 161-170.
[20] XU Y, OSEP A, BAN Y, et al. How to train your deep multi-object tracker[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6787-6796.
[21] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//Proceedings of the European Conference on Computer Vision, 2020: 107-122.
[22] LIU Q, CHEN D, CHU Q, et al. Online multi-object tracking with unsupervised re-identification learning and occlusion estimation[J]. arXiv:2201.01297, 2022.
[23] ZHANG Y, WANG C, WANG X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087. |