[1] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述[J].计算机工程与应用, 2023, 59(4): 30-42.
ZHANG M X, ZHANG X X, LIU S S, et al. Review of recommendation systems using knowledge graph[J].Computer Engineering and Applications, 2023, 59(4): 30-42.
[2] 罗承天, 叶霞. 基于知识图谱的推荐算法研究综述[J]. 计算机工程与应用, 2023, 59(1): 49-60.
LUO C T, YE X. Survey on knowledge graph-based recommendation methods[J]. Computer Engineering and Applications, 2023, 59(1): 49-60.
[3] 徐有为, 张宏军, 程恺, 等.知识图谱嵌入研究综述[J].计算机工程与应用, 2022, 58(9): 30-50.
XU Y W, ZHANG H J, CHENG K, et al. Comprehensive survey on knowledge graph embedding[J]. Computer Engineering and Applications, 2022, 58(9): 30-50.
[4] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[5] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014: 1112-1119.
[6] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015: 2181-2187.
[7] WANG Z, LI J, LIU Z, et al. Text-enhanced representation learning for knowledge graph[C]//Proceedings of International Joint Conference on Artificial Intelligent, 2016: 14-27.
[8] NGUYEN D Q, SIRTS K, QU L, et al. STransE: a novel embedding model of entities and relationships in knowledge bases[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics, 2016: 460-466.
[9] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data[J]. Machine Learning, 2014, 94(2): 233-259.
[10] LIU Q, JIANG H, EVDOKIMOV A, et al. Probabilistic reasoning via deep learning: neural association models[J]. arXiv:1603.07704, 2016.
[11] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations, 2014: 129-139.
[12] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning, 2016: 2071-2080.
[13] BALA?EVI? I, ALLEN C, HOSPEDALES T M. Tucker: tensor factorization for knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019: 5184-5193.
[14] HITCHCOCK F L. The expression of a tensor or a polyadic as a sum of products[J]. Studies in Applied Mathematics, 1927, 6(1): 164-189.
[15] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web, 2001: 285-295.
[16] RENDLE S. Factorization machines[C]//Proceedings of the 2010 IEEE International Conference on Data Mining, 2010: 995-1000.
[17] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[18] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009: 452-461.
[19] CHEN X, XU H, ZHANG Y, et al. Sequential recommendation with user memory networks[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, 2018: 108-116.
[20] CHENG Z, DING Y, ZHU L, et al. Aspect-aware latent factor model: rating prediction with ratings and reviews[C]//Proceedings of the 2018 World Wide Web Conference, 2018: 639-648.
[21] FENG F, HE X, WANG X, et al. Temporal relational ranking for stock prediction[J]. ACM Transactions on Information Systems (TOIS), 2019, 37(2): 1-30.
[22] CATHERINE R, COHEN W. Personalized recommendations using knowledge graphs: a probabilistic logic programming approach[C]//Proceedings of the 10th ACM Conference on Recommender Systems, 2016: 325-332.
[23] HE R, KANG W C, MCAULEY J. Translation-based recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems, 2017: 161-169.
[24] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701-710.
[25] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, 2015: 1067-1077.
[26] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 855-864.
[27] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 353-362.
[28] PIAO G, BRESLIN J G. Transfer learning for item recommendations and knowledge graph completion in item related domains via a co-factorization model[C]//Proceedings of the European Semantic Web Conference, 2018: 496-511.
[29] ZHANG Y, AI Q, CHEN X, et al. Learning over knowledge-base embeddings for recommendation[J]. arXiv:1803.06540, 2018.
[30] CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference, 2019: 151-161.
[31] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[32] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2017: 91-110.
[33] REDDI S J, KALE S, KUMAR S. On the convergence of adam and beyond[C]//Proceedings of the 6th International Conference on Learning Representations, 2018: 81-90.
[34] SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Advances in Neural Information Processing Systems, 2013: 926-934.
[35] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 601-610.
[36] NOIA T D, OSTUNI V C, TOMEO P, et al. Sprank: semantic path-based ranking for top-n recommendations using linked open data[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2016, 8(1): 1-34.
[37] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems, 2019: 18-30. |