[1] 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273.
ZHU J Y, GAO M T. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications, 2021, 57(6): 267-273.
[2] 何元烈, 徐扣. 欠驱动平面机器人逆运动学求解研究——粒子群优化神经网络算法求解[J]. 计算机工程与应用, 2016, 52(17): 54-58.
HE Y L, XU K. Particle swarm neural network solution to inverse kinematics of underactuated planar robot[J]. Computer Engineering and Applications, 2016, 52(17): 54-58.
[3] 王晓艳, 曹德欣. 基于进化能力的多策略粒子群优化算法[J]. 计算机工程与应用, 2023, 59(5): 78-86.
WANG X Y, CAO D X. Multi-strategy particle swarm optimization algorithm based on evolution ability[J]. Computer Engineering and Applications, 2023, 59(5): 78-86.
[4] 梁田, 曹德欣. 基于莱维飞行的改进简化粒子群算法[J]. 计算机工程与应用, 2021, 57(20): 188-196.
LIANG T, CAO D X. Improved and simplified particle swarm optimization algorithm based on Levy flight[J]. Computer Engineering and Applications, 2021, 57(20): 188-196.
[5] 陈博文, 邹海. 总结性自适应变异的粒子群算法[J]. 计算机工程与应用, 2022, 58(8): 67-75.
CHEN B W, ZOU H. Self-conclusion and self-adaptive variation particle swarm optimization[J]. Computer Engineering and Applications, 2022, 58(8): 67-75.
[6] XIA X, GUI L, YU F, et al. Triple archives particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2019, 50(12): 4862-4875.
[7] YU F, TONG L, XIA X. Adjustable driving force based particle swarm optimization algorithm[J]. Information Sciences, 2022, 609: 60-78.
[8] GONG Y J, LI J J, ZHOU Y, et al. Genetic learning particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2015, 46(10): 2277-2290.
[9] LIU W, WANG Z, YUAN Y, et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer[J]. IEEE Transactions on Cybernetics, 2019, 51(2): 1085-1093.
[10] TIAN M, LIU Q, LU Y, et al. A diversity-feedback-regulated particle swarm optimization for coverage enhancing problem in directional sensor network[C]//Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery,2021: 1416-1424.
[11] VAN DEN BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
[12] XIA X, GUI L, HE G, et al. An expanded particle swarm optimization based on multi-exemplar and forgetting ability [J]. Information Sciences, 2020, 508: 105-120.
[13] WEI B, XIA X, YU F, et al. Multiple adaptive strategies based particle swarm optimization algorithm[J]. Swarm and Evolutionary Computation, 2020, 57: 100731.
[14] LIU Q, LI J, REN H, et al. All particles driving particle swarm optimization: Superior particles pulling plus inferior particles pushing[J]. Knowledge-Based Systems, 2022, 249: 108849.
[15] LYNN N, SUGANTHAN P N. Ensemble particle swarm optimizer[J]. Applied Soft Computing, 2017, 55: 533-548.
[16] LIU J, HUANG J, SUN R, et al. Data fusion for multi-source sensors using GA-PSO-BP neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(10): 6583-6598.
[17] GUO E, GAO Y, HU C, et al. A hybrid PSO-DE intelligent algorithm for solving constrained optimization problems based on feasibility rules[J]. Mathematics, 2023, 11(3): 522.
[18] LIANG J J, QU B, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R]. Zhengzhou:Zhengzhou University. Computational Intelligence Laboratory & Singapore: Nanyang Technological University, 2013.
[19] WU G, MALLIPEDDI R, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real?parameter optimization[R]. Changsha: National University of Defense Technology & Daegu: Kyungpook National University & Singapore: Nanyang Technological University, 2017.
[20] LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
[21] CHENG R, JIN Y. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences, 2015, 291: 43-60. |