计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (7): 222-228.DOI: 10.3778/j.issn.1002-8331.2211-0129

• 图形图像处理 • 上一篇    下一篇

多智能体深度强化学习的图像特征分类方法

张泽崴,张建勋,邹航,李林,南海   

  1. 重庆理工大学 计算机科学与工程学院,重庆 400054
  • 出版日期:2024-04-01 发布日期:2024-04-01

Image Feature Classification Based on Multi-Agent Deep Reinforcement

ZHANG Zewei, ZHANG Jianxun, ZOU Hang, LI Lin, NAN Hai   

  1. College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
  • Online:2024-04-01 Published:2024-04-01

摘要: 为解决在图像特征识别分类等机器学习任务中,存在输入图像数据复杂度过高且与部分数据与特征无关的问题,提出了一种多智能体深度强化学习的图像特征分类方法。将图像特征分类任务转化为一个部分可观测的马尔可夫决策过程。通过使用多个移动的同构智能体去收集部分图像信息,并研究智能体如何形成对图像的局部理解并采取行动,以及如何从局部观察的图像中提取相关特征并分类,以此降低数据复杂性和过滤掉不相关数据。通过改进的值函数分解方法训练智能体策略网络,对环境的全局回报按照每个智能体的贡献进行拆分,解决智能体的信度分配问题。该方法在MNIST手写数字数据集和NWPU-RESISC45遥感图像数据集上进行了验证,相比基线算法能够学习到更加有效的联合策略,分类过程拥有更好的稳定性,同时精确率也有提升。

关键词: 多智能体, 图像特征分类, 深度强化学习, 值函数分解

Abstract: In order to solve the problem of high complexity of input image data in machine learning tasks such as image feature recognition and classification, a multi-agent deep reinforcement learning method for image feature classification is proposed. Firstly, the image feature classification task is transformed into a partially observable Markov decision process. It uses multiple moving isomorphic agents to collect part of the image information, and studies how agents form local understanding of the image and take actions, and how to extract and classify relevant features from locally observed images, so as to reduce the data complexity and filter out irrelevant data. Secondly, the improved value function decomposition method is used to train the agent strategy network, and the global return of the environment is divided according to the contribution of each agent, so as to solve the reliability allocation problem of the agent. The proposed method is verified on MNIST handwritten numerals data set and NWPU-RESISC45 remote sensing image data set. Compared with the baseline algorithm, it can learn more effective association strategies, and the classification process has better stability and improved accuracy.

Key words: multi-agent, image feature classification, deep reinforcement learning, value function decomposition