计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (6): 10-26.DOI: 10.3778/j.issn.1002-8331.2307-0421
呼伟,徐巧枝,葛湘巍,于磊
出版日期:
2024-03-15
发布日期:
2024-03-15
HU Wei, XU Qiaozhi, GE Xiangwei, YU Lei
Online:
2024-03-15
Published:
2024-03-15
摘要: 医学图像分割在医学图像处理领域中具有广泛的应用前景,通过定位和分割出感兴趣的器官、组织或病变区域,为诊断和治疗提供辅助信息。但不同模态医学图像之间存在域偏移问题,这会导致在实际部署时分割模型的性能大幅下降。域适应技术是解决该问题的有效途径,尤其是无监督域适应,因其不需要目标域标签信息而成为医学图像处理领域的研究热点。目前,针对医学图像分割的无监督域适应研究的综述报告相对较少,对近年医学图像分割的无监督域适应的相关研究进行了整理、分析和总结,并对未来进行了展望,希望帮助相关研究人员快速了解并熟悉该领域的研究现状及趋势。
呼伟, 徐巧枝, 葛湘巍, 于磊. 医学图像分割的无监督域适应研究综述[J]. 计算机工程与应用, 2024, 60(6): 10-26.
HU Wei, XU Qiaozhi, GE Xiangwei, YU Lei. Review of Unsupervised Domain Adaptation in Medical Image Segmentation[J]. Computer Engineering and Applications, 2024, 60(6): 10-26.
[1] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015), Munich, October 5-9, 2015: 234-241. [2] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [4] 徐海, 谢洪涛, 张勇东.视觉域泛化技术及研究进展[J].广州大学学报 (自然科学版), 2022, 21(2):42-59. XU H, XIE H T, ZHANG Y D. Review of domain generalization in vision[J]. Journal of Guangzhou University (Natural Science Edition), 2022, 21(2): 42-59 [5] WANG M, DENG W. Deep visual domain adaptation: a survey[J]. Neurocomputing, 2018, 312: 135-153. [6] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515-548. FAN C N, LIU P, XIAO T, et al. A review of deep domain adaptation:general situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3):515-548. [7] SUN Y, DAI D, XU S. Rethinking adversarial domain adaptation: orthogonal decomposition for unsupervised domain adaptation in medical image segmentation[J]. Medical Image Analysis, 2022, 82: 102623. [8] GOLDBERGER J, GORDON S, GREENSPAN H. An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures[C]//Proceedings of the International Conference on Computer Vision, 2003: 487-493. [9] ZHUANG F, CHENG X, LUO P, et al. Supervised representation learning: transfer learning with deep autoencoders[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015. [10] PAN Y, YAO T, LI Y, et al. Transferrable prototypical networks for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2239-2247. [11] 田青, 朱雅喃, 马闯.基于深度学习的域适应方法综述[J].数据采集与处理, 2022, 37(3):512-541. TIAN Q, ZHU Y N, MA C. Review on domain adaptation methods based on deep learning[J]. Journal of Data Acquisition and Processing, 2022, 37(3): 512-541. [12] FUGLEDE B, TOPSOE F. Jensen-Shannon divergence and Hilbert space embedding[C]//Proceedings of the 18th International Symposium on Information Theory, 2004. [13] BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(14): e49-e57. [14] SUN H. Mercer theorem for RKHS on noncompact sets[J]. Journal of Complexity, 2005, 21(3): 337-349. [15] GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13(1): 723-773. [16] GHIFARY M, KLEIJN W B, ZHANG M. Domain adaptive neural networks for object recognition[C]//Proceedings of the 13th Pacific Rim International Conference on Artificial Intelligence, Gold Coast, December 1-5, 2014: 898-904. [17] LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the International Conference on Machine Learning, 2015:97-105. [18] LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the International Conference on Machine Learning, 2017: 2208-2217. [19] ZHANG X, YU F X, CHANG S F, et al. Deep transfer network: unsupervised domain adaptation[J]. arXiv:1503.00591, 2015. [20] XU P, GURRAM P, WHIPPS G, et al. Wasserstein distance based domain adaptation for object detection[J]. arXiv:1909.08675, 2019. [21] COURTY N, FLAMARY R, HABRARD A, et al. Joint distribution optimal transportation for domain adaptation[C]//Advances in Neural Information Processing Systems, 2017. [22] LEE C Y, BATRA T, BAIG M H, et al. Sliced Wasserstein discrepancy for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10285-10295. [23] DIAO S, CHEN X, XIANG D, et al. A two-stage unsupervised domain adaptation method for OCT image segmentation[C]//Medical Imaging 2023: Image Processing, 2023: 827-834. [24] CHARTSIAS A, JOYCE T, PAPANASTASIOU G, et al. Disentangled representation learning in cardiac image analysis[J]. Medical Image Analysis, 2019, 58: 101535. [25] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1125-1134. [26] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232. [27] HUO Y, XU Z, MOON H, et al. SynSeg-Net: synthetic segmentation without target modality ground truth[J]. IEEE Transactions on Medical Imaging, 2018, 38(4): 1016-1025. [28] ZENG G, LERCH T D, SCHMARANZER F, et al. Semantic consistent unsupervised domain adaptation for cross-modality medical image segmentation[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, September 27-October 1, 2021:201-210. [29] IACONO P, KHAN N. Structure preserving cycle-GAN for unsupervised medical image domain adaptation[J]. arXiv:2304.09164, 2023. [30] ZHANG X, ZHANG C, LIU D, et al. SynthMix: mixing up aligned synthesis for medical cross-modality domain adaptation[J]. arXiv:2305.04156, 2023. [31] HU X, WANG C, SHI Y. Contrastive image synthesis and self-supervised feature adaptation for cross-modality biomedical image segmentation[J]. arXiv:2207.13240, 2022. [32] LIU Q, CHEN C, QIN J, et al. Feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 1013-1023. [33] YANG C, GUO X, CHEN Z, et al. Source free domain adaptation for medical image segmentation with fourier style mining[J]. Medical Image Analysis, 2022, 79: 102457. [34] ZHANG Z, LI Y, SHIN B S. C2‐GAN: content‐consistent generative adversarial networks for unsupervised domain adaptation in medical image segmentation[J]. Medical Physics, 2022, 49(10): 6491-6504. [35] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030. [36] KAMNITSAS K, BAUMGARTNER C, LEDIG C, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks[C]//Proceedings of the 25th International Conference on Information Processing in Medical Imaging, Boone, NC, June 25-30, 2017: 597-609. [37] DOU Q, OUYANG C, CHEN C, et al. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss[J]. arXiv:1804. 10916, 2018. [38] DOU Q, OUYANG C, CHEN C, et al. Pnp-Adanet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation[J]. IEEE Access, 2019, 7: 99065-99076. [39] CUI Z, LI C, DU Z, et al. Structure-driven unsupervised domain adaptation for cross-modality cardiac segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3604-3616. [40] DONG S, PAN Z, FU Y, et al. Partial unbalanced feature transport for cross-modality cardiac image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(6): 1758-1773. [41] CUI H, YUWEN C, JIANG L, et al. Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation[J]. Computers in Biology and Medicine, 2021, 136: 104726. [42] LIU B, PAN D, SHUAI Z, et al. ECSD-Net: a joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation[J]. Computer Methods and Programs in Biomedicine, 2022, 213: 106530. [43] WANG S, FU Z, WANG B, et al. Fusing feature and output space for unsupervised domain adaptation on medical image segmentation[J]. International Journal of Imaging Systems and Technology, 2023, 33(5): 1672-1681. [44] XIE Q, LI Y, HE N, et al. Unsupervised domain adaptation for medical image segmentation by disentanglement learning and self-training[J]. IEEE Transactions on Medical Imaging, 2024, 43: 4-14. [45] WANG R, ZHENG G. CyCMIS: cycle-consistent cross-domain medical image segmentation via diverse image augmentation[J]. Medical Image Analysis, 2022, 76: 102328. [46] YAO K, SU Z, HUANG K, et al. A novel 3D unsupervised domain adaptation framework for cross-modality medical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(10): 4976-4986. [47] WANG R, ZHOU Q, ZHENG G. EDRL: entropy-guided disentangled representation learning for unsupervised domain adaptation in semantic segmentation[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 107729. [48] CHARTSIAS A, PAPANASTASIOU G, WANG C, et al. Disentangle, align and fuse for multimodal and semi-supervised image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 40(3): 781-792. [49] ZHONG Q, ZENG F, LIAO F, et al. Joint image and feature adaptative attention-aware networks for cross-modality semantic segmentation[J]. Neural Computing and Applications, 2023, 35(5): 3665-3676. [50] HOFFMAN J, TZENG E, PARK T, et al. Cycada: cycle-consistent adversarial domain adaptation[C]//Proceedings of the International Conference on Machine Learning, 2018: 1989-1998. [51] WANG Q, DU Y, FAN H, et al. Towards collaborative appearance and semantic adaptation for medical image segmentation[J]. Neurocomputing, 2022, 491: 633-643. [52] CALISTO M G B, LAI-YUEN S K. C-MADA: unsupervised cross-modality adversarial domain adaptation framework for medical image segmentation[C]//Medical Imaging 2022: Image Processing, 2022: 971-978. [53] CHEN C, DOU Q, CHEN H, et al. Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 865-872. [54] LEI H, LIU W, XIE H, et al. Unsupervised domain adaptation based image synthesis and feature alignment for joint optic disc and cup segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(1): 90-102. [55] BALDEON CALISTO M, LAI-YUEN S K, PUENTE-MEJIA B. Stac-Da: structure aware cross-modality domain adaptation framework with image and feature level adaptation for medical image segmentation[J]. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4075460. [56] GHAMSARIAN N, TEJERO J G, NEILA P M, et al. Domain adaptation for medical image segmentation using transformation-invariant self-training[J]. arXiv:2307.16660, 2023. [57] LEE J H, LEE G. Feature alignment by uncertainty and self-training for source-free unsupervised domain adaptation[J]. Neural Networks, 2023, 161: 682-692. [58] ARASLANOV N, ROTH S. Self-supervised augmentation consistency for adapting semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 15384-15394. [59] PAN F, SHIN I, RAMEAU F, et al. Unsupervised intra-domain adaptation for semantic segmentation through self-supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3764-3773. [60] HONG J, YU S C H, CHEN W. Unsupervised domain adaptation for cross-modality liver segmentation via joint adversarial learning and self-learning[J]. Applied Soft Computing, 2022, 121: 108729. [61] SHIN H, KIM H, KIM S, et al. SDC-UDA: volumetric unsupervised domain adaptation framework for slice-direction continuous cross-modality medical image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7412-7421. [62] LIU H, XU Z, GAO R, et al. COSST: multi-organ segmentation with partially labeled datasets using comprehensive supervisions and self-training[J]. arXiv:2304.14030, 2023. [63] JIANG K, GONG T, QUAN L. A medical unsupervised domain adaptation framework based on Fourier transform image translation and multi-model ensemble self-training strategy[J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18(10):1885-1894. [64] DU X, LIU Y. Constraint-based unsupervised domain adaptation network for multi-modality cardiac image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(1): 67-78. [65] YANG F, LIANG F, LU L, et al. Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation[J]. Biomedical Signal Processing and Control, 2022, 78: 103849. [66] LI J, FENG C, LIN X, et al. Utilizing GCN and meta-learning strategy in unsupervised domain adaptation for pancreatic cancer segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(1): 79-89. [67] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. [68] LIU J, LIU H, GONG S, et al. Automated cardiac segmentation of cross-modal medical images using unsupervised multi-domain adaptation and spatial neural attention structure[J]. Medical Image Analysis, 2021, 72: 102135. [69] MA X, YUAN J, CHEN Y, et al. Attention-based cross-layer domain alignment for unsupervised domain adaptation[J]. Neurocomputing, 2022, 499: 1-10. [70] CHEN X, KUANG T, DENG H, et al. Dual adversarial attention mechanism for unsupervised domain adaptive medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 3445-3453. [71] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv:1503.02531, 2015. [72] LIU P, TRAN C T, KONG B, et al. CADA: multi-scale collaborative adversarial domain adaptation for unsupervised optic disc and cup segmentation[J]. Neurocomputing, 2022, 469: 209-220. [73] ZHAO Z, XU K, YEO H Z, et al. MS-MT: multi-scale mean teacher with contrastive unpaired translation for cross-modality vestibular schwannoma and cochlea segmentation[J]. arXiv:2303.15826, 2023. [74] PARK T, EFROS A A, ZHANG R, et al. Contrastive learning for unpaired image-to-image translation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, August 23-28, 2020: 319-345. [75] ZHAO Z, ZHOU F, XU K, et al. LE-UDA: label-efficient unsupervised domain adaptation for medical image segmentation[J]. arXiv:2212.02078, 2022. [76] XU R, LUO Y, DU B. Unsupervised cross-domain pulmonary nodule detection without source data[J]. arXiv:2304. 01085, 2023. [77] WEN Z, ZHANG X, YE C. Source-free domain adaptation for medical image segmentation via selectively updated mean teacher[C]//Proceedings of the International Conference on Information Processing in Medical Imaging. Cham: Springer Nature, 2023: 225-236. [78] SHI A, FENG W. Triple consistency-based self-ensembling model for unsupervised domain adaption in medical image segmentation[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2023: 1-7. [79] QIN C, LI W, ZHENG B, et al. Dual adversarial models with cross-coordination consistency constraint for domain adaption in brain tumor segmentation[J]. Frontiers in Neuroscience, 2023, 17: 1043533. [80] ZHAO Z, ZHOU F, ZENG Z, et al. Meta-hallucinator: towards few-shot cross-modality cardiac image segmentation[C]//Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, September 18-22, 2022. Cham: Springer Nature, 2022: 128-139. [81] WANG Y, CHENG J, CHEN Y, et al. FVP: Fourier visual prompting for source-free unsupervised domain adaptation of medical image segmentation[J]. arXiv:2304.13672, 2023. [82] BIAN X, LUO X, WANG C, et al. DDA-Net: unsupervised cross-modality medical image segmentation via dual domain adaptation[J]. Computer Methods and Programs in Biomedicine, 2022, 213: 106531. [83] BIAN C, YUAN C, MA K, et al. Domain adaptation meets zero-shot learning: an annotation-efficient approach to multi-modality medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 41(5):1043-1056. [84] GU M, VESAL S, KOSTI R, et al. Few-shot unsupervised domain adaptation for multi-modal cardiac image segmentation[J].arXiv:2201.12386, 2022. [85] LIU C, WANG L, LYU L, et al. DEJA VU: Continual model generalization for unseen domains[J]. arXiv:2301.10418, 2023. |
[1] | 覃姜维, 唐德玉. 结合判别分析和分布差异约束的领域适应方法[J]. 计算机工程与应用, 2024, 60(2): 77-86. |
[2] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[3] | 石磊, 籍庆余, 陈清威, 赵恒毅, 张俊星. 视觉Transformer在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2023, 59(8): 41-55. |
[4] | 杨鹤, 柏正尧. CoT-TransUNet:轻量化的上下文Transformer医学图像分割网络[J]. 计算机工程与应用, 2023, 59(3): 218-225. |
[5] | 孙福艳, 王琼, 吕宗旺, 龚春艳. 深度学习在结肠息肉分割中的应用综述[J]. 计算机工程与应用, 2023, 59(23): 15-27. |
[6] | 王国力, 孙宇, 魏本征. 医学图像图深度学习分割算法综述[J]. 计算机工程与应用, 2022, 58(12): 37-50. |
[7] | 赵鹏飞,李艳玲,林民. 结合胶囊网络的领域适应意图识别[J]. 计算机工程与应用, 2021, 57(21): 188-194. |
[8] | 郭树旭1,马树志1,李 晶2,张惠茅2,孙长建1,金兰依1,刘晓鸣1,刘奇楠1,李雪妍1. 基于全卷积神经网络的肝脏CT影像分割研究[J]. 计算机工程与应用, 2017, 53(18): 126-131. |
[9] | 张 翡,范 虹. 基于模糊C均值聚类的医学图像分割研究[J]. 计算机工程与应用, 2014, 50(4): 144-151. |
[10] | 张效娟1,刘 技2,王 昊2,3,刘玲玲2. Snake与多尺度分析的医学图像分割研究[J]. 计算机工程与应用, 2011, 47(18): 207-209. |
[11] | 杨 青,何明一. 改进CV模型的医学图像分割[J]. 计算机工程与应用, 2010, 46(17): 194-196. |
[12] | 陈灵娜,罗 扬,陈增科. 一种新的肝肿瘤CT图像分割方法[J]. 计算机工程与应用, 2009, 45(34): 222-224. |
[13] | 王 娜,郭 敏. 改进的Fast Marching方法在医学图像分割中的应用[J]. 计算机工程与应用, 2009, 45(18): 225-226. |
[14] | 黄文明. 曲线拟合的模糊医学图像分割算法[J]. 计算机工程与应用, 2009, 45(18): 194-197. |
[15] | 吴海珍,何 伟,蒋加伏,齐 琦. 基于仿生模式识别的医学图像分割方法[J]. 计算机工程与应用, 2009, 45(16): 185-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||