计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (6): 10-26.DOI: 10.3778/j.issn.1002-8331.2307-0421

• 热点与综述 • 上一篇    下一篇

医学图像分割的无监督域适应研究综述

呼伟,徐巧枝,葛湘巍,于磊   

  1. 1.内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
    2.内蒙古自治区人民医院,呼和浩特 010020
  • 出版日期:2024-03-15 发布日期:2024-03-15

Review of Unsupervised Domain Adaptation in Medical Image Segmentation

HU Wei, XU Qiaozhi, GE Xiangwei, YU Lei   

  1. 1.College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
    2.Inner Mongolia Autonomous Region People’s Hospital, Hohhot 010020, China
  • Online:2024-03-15 Published:2024-03-15

摘要: 医学图像分割在医学图像处理领域中具有广泛的应用前景,通过定位和分割出感兴趣的器官、组织或病变区域,为诊断和治疗提供辅助信息。但不同模态医学图像之间存在域偏移问题,这会导致在实际部署时分割模型的性能大幅下降。域适应技术是解决该问题的有效途径,尤其是无监督域适应,因其不需要目标域标签信息而成为医学图像处理领域的研究热点。目前,针对医学图像分割的无监督域适应研究的综述报告相对较少,对近年医学图像分割的无监督域适应的相关研究进行了整理、分析和总结,并对未来进行了展望,希望帮助相关研究人员快速了解并熟悉该领域的研究现状及趋势。

关键词: 医学图像分割, 域偏移, 域适应, 无监督域适应

Abstract: Medical image segmentation has broad application prospects in the field of medical image processing, providing auxiliary information for diagnosis and treatment by locating and segmenting interested organs, tissues, or lesion areas. However, there is a domain offset problem between different modalities of medical images, which can lead to a significant decrease in the performance of the segmentation model during actual deployment. Domain adaptation technology is an effective way to solve this problem, especially unsupervised domain adaptation, which has become a research hotspot in the field of medical image processing because it does not require target domain label information. At present, there are relatively few review reports on unsupervised domain adaptation research in medical image segmentation. Therefore, this paper summarizes, analyzes, and prospects the future of unsupervised domain adaptation research in medical image segmentation in recent years, hoping to help relevant researchers quickly understand and familiarize themselves with the current research status and trends in this field.

Key words: medical image segmentation, domain shift, domain adaptation, unsupervised domain adaptation