[1] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[2] HAN C, HAYASHI H, RUNDO L, et al. GAN-based synthetic brain MR image generation[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018: 734-738.
[3] YU X, QU Y, HONG M. Underwater-GAN: underwater image restoration via conditional generative adversarial network[C]//Proceedings of the International Conference on Pattern Recognition, 2018: 66-75.
[4] CHEREPKOV A, VOYNOV A, BABENKO A. Navigating the GAN parameter space for semantic image editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3671-3680.
[5] LIU R, WANG X, LU H, et al. SCCGAN: style and characters inpainting based on CGAN[J]. Mobile networks and applications, 2021, 26(1): 3-12.
[6] ZHU Y, ZHANG Y, YANG H, et al. GANCoder: an automatic natural language-to-programming language translation approach based on GAN[C]//CCF International Conference on Natural Language Processing and Chinese Computing, 2019: 529-539.
[7] 张帅勇, 刘美琴, 姚超, 等. 分级特征反馈融合的深度图像超分辨率重建[J]. 自动化学报. 2022, 48(4): 992-1003.
ZHANG S Y, LIU M Q, YAO C, et al. Hierarchical feature feedback network for depth super-resolution reconstruction[J]. Acta Automatica Sinica, 2022, 48(4): 992-1003.
[8] 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(9): 1990-2010.
YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010.
[9] 钟梦圆, 姜麟. 超分辨率图像重建算法综述[J]. 计算机科学与探索, 2022, 16(5): 972-990.
ZHONG M Y, JIANG L. Review of super-resolution image reconstruction algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990.
[10] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
[11] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European Conference on Computer Vision, 2016: 391-407.
[12] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
[13] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[14] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
[15] YANG F, YANG H, FU J, et al. Learning texture transformer network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5791-5800.
[16] LIU C, LI H, LIANG Z, et al. A novel deep-learning-based enhanced texture transformer network for reference image super-resolution[J]. Electronics, 2022, 11(19): 3038.
[17] XIE W, HUANG T, WANG M. MNSRNet: multimodal transformer network for 3D surface super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 12703-12712.
[18] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4681-4690.
[19] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.
[20] JOZSA R. Searching in Grover’s algorithm[J]. arXiv:quantum-physics/9901021,1999.
[21] ZHANG M, DONG L, ZENG Y, et al. Improved circuit implementation of the HHL algorithm and its simulations on QISKIT[J]. Scientific Reports, 2022, 12(1): 1-12.
[22] AHMED S. Pattern recognition with quantum support vector machine (QSVM) on near term quantum processors[D]. Dhaka: Brac University, 2019.
[23] LLOYD S, MOHSENI M, REBENTROST P. Quantum principal component analysis[J]. Nature Physics, 2014, 10(9): 631-633.
[24] AMIN M H, ANDRIYASH E, ROLFE J, et al. Quantum Boltzmann machine[J]. Physical Review X, 2018, 8(2): 21050.
[25] A?MEUR E, BRASSARD G, GAMBS S. Quantum clustering algorithms[C]//Proceedings of the 24th International Conference on Machine Learning, 2007: 1-8.
[26] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549: 195-202.
[27] BENEDETTI M, LLOYD E, SACK S, et al. Parameterized quantum circuits as machine learning models[J]. Quantum Science and Technology, 2019, 4(4): 43001.
[28] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. arXiv:1801.00862,2018.
[29] KERENIDIS I, LANDMAN J, PRAKASH A. Quantum algorithms for deep convolutional neural networks[J]. arXiv:1911.01117,2019.
[30] PANDIAN A, KANCHANADEVI K, MOHAN V C, et al. Quantum generative adversarial network and quantum neural network for image classification[C]//2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), 2022: 473-478.
[31] DONG D, CHEN C, LI H, et al. Quantum reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part B), 2008, 38(5): 1207-1220.
[32] HUR T, KIM L, PARK D K. Quantum convolutional neural network for classical data classification[J]. Quantum Machine Intelligence, 2022, 4(1): 1-18.
[33] HUANG H, DU Y, GONG M, et al. Experimental quantum generative adversarial networks for image generation[J]. Physical Review Applied, 2021, 16(2): 24051.
[34] YAN F, VENEGAS-ANDRACA S E, HIROTA K. Toward implementing efficient image processing algorithms on quantum computers[J]. Soft Computing, 2022: 1-13.
[35] WANG Z, XU M, ZHANG Y. Review of quantum image processing[J]. Archives of Computational Methods in Engineering, 2022, 29(2): 737-761.
[36] LIU Z W, WANG L, CUI M. Quantum image segmentation based on grayscale morphology[J]. IEEE Transactions on Quantum Engineering, 2022, 3: 1-12.
[37] YAN F, ZHAO S, VENEGAS-ANDRACA S E, et al. Implementing bilinear interpolation with quantum images[J]. Digital Signal Processing, 2021, 117: 103149.
[38] NIU M Y, ZLOKAPA A, BROUGHTON M, et al. Entangling quantum generative adversarial networks[J]. Physical Review Letters, 2022, 128(22): 220505.
[39] STEIN S A, BAHERI B, CHEN D, et al. QuGAN: a generative adversarial network through quantum states[J]. arXiv:2010.09036,2020.
[40] RUDOLPH M S, TOUSSAINT N B, KATABARWA A, et al. Generation of high-resolution handwritten digits with an ion-trap quantum computer[J]. Physical Review X, 2022, 12(3): 31010.
[41] WANG M, JIANG Y. Data reconstruction based on quantum neural networks[J]. arXiv:2209.05711,2022.
[42] WU C, QI B, CHEN C, ET AL. Robust learning control design for quantum unitary transformations[J]. IEEE Transactions on Cybernetics, 2016, 47(12): 4405-4417.
[43] SIM S, JOHNSON P D, ASPURU GUZIK A. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms[J]. Advanced Quantum Technologies, 2019, 2(12): 1900070.
[44] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[45] ZHOU N, ZHANG T, XIE X, et al. Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution[J]. Signal Processing: Image Communication, 2022: 116891.
[46] LI J, LI B, XU J, et al. Fully connected network-based intra prediction for image coding[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3236-3247.
[47] LIU J, LIM K H, WOOD K L, et al. Hybrid quantum-classical convolutional neural networks[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 1-8.
[48] NGUEMTO S, LEYTON-ORTEGA V. Re-QGAN: an optimized adversarial quantum circuit learning framework[J]. arXiv:2208.02165,2022. |