计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (17): 48-66.DOI: 10.3778/j.issn.1002-8331.2212-0108
徐国新,李雷孝,何嘉彬,高昊昱
出版日期:
2023-09-01
发布日期:
2023-09-01
XU Guoxin, LI Leixiao, HE Jiabin, GAO Haoyu
Online:
2023-09-01
Published:
2023-09-01
摘要: 驾驶员安全带检测作为计算机视觉的一个具体应用领域,目前基于计算机视觉相关技术的驾驶员安全带检测方法以节约人力、实时监督、高精度等优势逐渐成为研究热点。对近年来驾驶员安全带检测方法进行了系统性的分析和总结,对驾驶员安全带检测背景和传统传感器检测方法进行了简要说明;介绍了数字图像处理和机器学习的相关方法,分析总结其优缺点;重点分析和总结了深度学习的方法,从模型训练常用方法、卷积神经网络和衍生的目标检测算法的发展历程及其在驾驶员安全带检测中的应用三个方面进行介绍;对当前研究仍面临的问题以及进一步的研究方向进行了总结和展望。
徐国新, 李雷孝, 何嘉彬, 高昊昱. 驾驶员安全带检测方法研究综述[J]. 计算机工程与应用, 2023, 59(17): 48-66.
XU Guoxin, LI Leixiao, HE Jiabin, GAO Haoyu. Review of Research on Driver Seat Belt Detection Methods[J]. Computer Engineering and Applications, 2023, 59(17): 48-66.
[1] FEBRES J D,GARCIA H S,HERRERA S,et al.Influence of seat-belt use on the severity of injury in traffic accidents[J].European Transport Research Review,2020,12(1):1-12. [2] ACOSTA R L,KWIGIZILE V,OH J S,et al.Presence of additional safety belt enforcement increases safety belt use by drivers[J].Transportation Research Record,2020,2674(3):93-99. [3] 李明熹,林正奎,曲毅.计算机视觉下的车辆目标检测算法综述[J].计算机工程与应用,2019,55(24):20-28. LI M X,LIN Z K,QU Y.Survey of vehicle object detection algorithm in computer vision[J].Computer Engineering and Applications,2019,55(24):20-28. [4] CONAWAY B J.Seat belt status alerting unit:US6002325[P]. 1999-12-14. [5] BATENKOW V,BURGLER S,KABISCH C,et al.Seat belt lock with hall sensor:US9663064[P].2017-05-30. [6] YOSHIMOCHI S,ANDO H.Detection system of vehicle seat belt wearing:JP2018012414[P].2018-01-25. [7] 宋志强,曹立波,欧阳志高,等.集成主被动式安全带的性能评估及优化分析[J].中国机械工程,2019,30(21):2567-2576. SONG Z Q,CAO L B,OUYANG Z G,et al.Performance evaluation and optimization analysis for integrated active and passive seat belts[J].China Mechanical Engineering,2019,30(21):2567-2576. [8] CHENG H C,CHANG C C,WANG W J.An effective seat belt detection system on the bus[C]//2020 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-Taiwan),2020:1-2. [9] 葛如海,胡满江,符凯.基于灰度积分投影的安全带佩戴识别方法[J].汽车工程,2012,34(9):787-790. GE R H,HU M J,FU K.A method of recognizing seat-belt wear based on gray scale integral projection[J].Automotive Engineering,2012,34(9):787-790. [10] YU D,ZHENG H,LIU C.Driver’s seat belt detection in crossroad based on gradient orientation[C]//2013 International Conference on Information Science and Cloud Computing Companion,2013:618-622. [11] 张晋.基于计算机视觉的驾驶员安全带佩戴的识别方法研究[D].哈尔滨:哈尔滨工程大学,2014. ZHANG J.Study on recognizing seat-belt wear based on computer vision[D].Harbin:Harbin Engineering University,2014. [12] QIU Y W,PAN J,ZHOU N,et al.Drivers’ seat belts detection at crossroads based on openCV[C]//Applied Mechanics and Materials,2014:2996-3000. [13] ARTAN Y,BULAN O,LOCE R P,et al.Passenger compartment violation detection in HOV/HOT lanes[J].IEEE Transactions on Intelligent Transportation Systems,2015,17(2):395-405. [14] 莫文英.基于图像处理与机器学习的车标及安全带识别研究[D].广州:广州大学,2018. MO W Y.Study on recognition of vehicle sign and safety band based on image processing and machine learning[D].Guangzhou:Guangzhou University,2018. [15] ZHANG D.Analysis and research on the images of drivers and passengers wearing seat belt in traffic inspection[J].Cluster Computing,2019,22(4):9089-9095. [16] 朱烙盛.智能交通中的驾驶员违章行为识别算法研究及软件系统设计[D].广州:华南理工大学,2018. ZHU L S.Research on recognition algorithm of driver illegal behavior and software system design in ITS[D].Guangzhou:South China University of Technology,2018. [17] YANG Z,XIONG H,CAI Z,et al.A new method of vision-based seat belt detection[J].International Journal of Embedded Systems,2019,11(6):755-763. [18] GUO H,LIN H,ZHANG S,et al.Image-based seat belt detection[C]//Proceedings of 2011 IEEE International Conference on Vehicular Electronics and Safety,Beijing,2011:161-164. [19] QIN X H,CHENG C,LI G,et al.Efficient seat belt detection in a vehicle surveillance application[C]//2014 9th IEEE Conference on Industrial Electronics and Applications,Hangzhou,2014:1247-1250. [20] 葛如海,胡满江,张学荣,等.基于GA-BP的安全带佩戴识别方法[J].江苏大学学报(自然科学版),2014,35(2):125-131. GE R H,HU M J,ZHANG X R,et al.Recognition method of safety belt wearing based on GA-BP[J].Journal of Jiangsu University(Natural Science Edition),2014,35(2):125-131. [21] 钟铭恩,黄伟,温程璐,等.基于红外标记视觉的安全带佩戴规范性检测[J].汽车工程,2017,39(7):760-766. ZHONG M E,HUANG W,WEN C L,et al.Detection on proper wearing of seat belt based on infrared mark vision[J].Automotive Engineering,2017,39(7):760-766. [22] ZHOU B,CHEN L,TIAN J,et al.Learning-based seat belt detection in image using salient gradient[C]//2017 12th IEEE Conference on Industrial Electronics and Applications(ICIEA),Siem Reap,2017:547-550. [23] LI W,LU J,LI Y,et al.Seatbelt detection based on cascade adaboost classifier[C]//2013 6th International Congress on Image and Signal Processing(CISP),Hangzhou,2013:783-787. [24] XU J,SONG K.Study on automatic detection method of automobile safety belt based on the improvement of Adaboost algorithm[C]//2015 3rd International Conference on Mechatronics and Industrial Informatics(ICMII 2015),2015:1045-1049. [25] 李赓.基于Adaboost的安全带检测方法[D].合肥:合肥工业大学,2015. LI G.Seat belt detection based on the Adaboost[D].Hefei:Hefei University of Technology,2015. [26] 胡满江.基于车载机器视觉的安全带识别方法研究[D].镇江:江苏大学,2014. HU M J.Research on seat blet identification based on vehicle-mounted machine vision[D].Zhenjiang:Jiangsu University,2014. [27] XI H,ZHANG Y,ZHANG Y.Detection of safety features of drivers based on image processing[C]//CICTP 2018:Intelligence,Connectivity,and Mobility.Reston,VA:American Society of Civil Engineers,2018:2098-2109. [28] ZHUANG F,QI Z,DUAN K,et al.A comprehensive survey on transfer learning[J].Proceedings of the IEEE,2020,109(1):43-76. [29] CHUN S,HAMIDI G N,CHOI J,et al.NADS-Net:a nimble architecture for driver and seat belt detection via convolutional neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,Seoul,2019:2413-2421. [30] 王欣然,田启川,张东.人脸口罩佩戴检测研究综述[J].计算机工程与应用,2022,58(10):13-26. WANG X R,TIAN Q C,ZHANG D.Review of research on face mask wearing detection[J].Computer Engineering and Applications,2022,58(10):13-26. [31] SHORTEN C,KHOSHGOFTAAR T M.A survey on image data augmentation for deep learning[J].Journal of Big Data,2019,6(1):1-48. [32] 周彬.面向卡口监控的安全带图像检测的应用与研究[D].武汉:武汉科技大学,2018. ZHOU B.Application and research of safety belt image detection in bayonet surveillance[D].Wuhan:Wuhan University of Science and Technology,2018. [33] 王鑫鹏,王晓强,林浩,等.深度学习典型目标检测算法的改进综述[J].计算机工程与应用,2022,58(6):42-57. WANG X P,WANG X Q,LIN H,et al.Review on improvement of typical object detection algorithms in deep learning[J].Computer Engineering and Application,2022,58(6):42-57. [34] ZHONG Z,ZHENG L,KANG G,et al.Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:13001-13008. [35] ZHAO Y,SHI Y,WANG Z.The improved YOLOV5 algorithm and its application in small target detection[C]//International Conference on Intelligent Robotics and Applications,Harbin,2022:679-688. [36] INOUE H.Data augmentation by pairing samples for images classification[J].arXiv:1801.02929,2018. [37] ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:beyond empirical risk minimization[J].arXiv:1710.09412,2017. [38] DEVRIES T,TAYLOR G W.Improved regularization of convolutional neural networks with cutout[J].arXiv:1708.04552,2017. [39] HARRIS E,MARCU A,PAINTER M,et al.Fmix:enhancing mixed sample data augmentation[J].arXiv:2002.12047,2020. [40] YUN S,HAN D,OH S J,et al.Cutmix:regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6023-6032. [41] GUI J,SUN Z,WEN Y,et al.A review on generative adversarial networks:algorithms,theory,and applications[J].IEEE Transactions on Knowledge & Data Engineering,2023,35(4):3313-3332. [42] CUBUK E D,ZOPH B,MANE D,et al.Autoaugment:learning augmentation strategies from data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:113-123. [43] HO D,LIANG E,CHEN X,et al.Population based augmentation:efficient learning of augmentation policy schedules[C]//International Conference on Machine Learning,Long Beach,2019:2731-2741. [44] LIM S,KIM I,KIM T,et al.Fast AutoAugment[J].arXiv:1905.00397,2019. [45] MULLER S G,HUTTER F.Trivialaugment:tuning-free yet state-of-the-art data augmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:774-782. [46] LI Z,LIU F,YANG W,et al.A survey of convolutional neural networks:analysis,applications,and prospects[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(12):6999-7019. [47] LIU W,WANG Z,LIU X,et al.A survey of deep neural network architectures and their applications[J].Neurocomputing,2017,100(234):11-26. [48] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [49] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [50] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [51] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston,2015:1-9. [52] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Seattle,2016:770-778. [53] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5?MB model size[J].arXiv:1602.07360,2016. [54] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [55] ZHANG X,ZHOU X,LIN M,et al.Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:6848-6856. [56] TAN M,LE Q.Efficientnet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning,Long Beach,2019:6105-6114. [57] HAN K,WANG Y,TIAN Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589. [58] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16×16 words:transformers for image recognition at scale[J].arXiv:2010.11929,2020. [59] YU C,XIAO B,GAO C,et al.Lite-hrnet:a lightweight high-resolution network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:10440-10450. [60] MA H,XIA X,WANG X,et al.MoCoViT:mobile convolutional vision transformer[J].arXiv:2205.12635,2022. [61] LIU Z,MAO H,WU C Y,et al.A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:11976-11986. [62] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587. [63] GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV),Santiago,2015:1440-1448. [64] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149. [65] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [66] BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [67] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice,2017:2961-2969. [68] CAI Z,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:6154-6162. [69] PANG J,CHEN K,SHI J,et al.Libra R-CNN:towards balanced learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:821-830. [70] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [71] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,Amsterdam,2016:21-37. [72] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [73] LI Z,ZHOU F.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [74] SHEN Z,LIU Z,LI J,et al.DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1919-1927. [75] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Seattle,2016:779-788. [76] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [77] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [78] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [79] GE Z,LIU S,WANG F,et al.Yolox:exceeding yolo series in 2021[J].arXiv:2107.08430,2021. [80] 付春芬.基于深度学习的安全带检测方法研究[D].武汉:华中科技大学,2015. FU C F.Research on seatbelt detection method based on deep learning[D].Wuhan:Central China University of Science and Technology,2015. [81] CHEN Y,TAO G,REN H,et al.Accurate seat belt detection in road surveillance images based on CNN and SVM[J].Neurocomputing,2018,274:80-87. [82] 霍星,费志伟,赵峰,等.深度学习在驾驶员安全带检测中的应用[J].计算机科学,2019,46(6A):182-187. HUO X,FEI Z W,ZHAO F,et al.Application of deep learning in driver’s safety belt detection[J].Computer Science,2019,46(6A):182-187. [83] 吕洁.视频大数据安全带智能识别技术[D].北京:中国石油大学,2019. LV J.Seat belt intelligent recognition technology based on video big data[D].Beijing:China University of Petroleum,2019. [84] ZHOU B,CHEN D,WANG X.Seat belt detection using convolutional neural network BN-Alexnet[C]//International Conference on Intelligent Computing,Liverpool,2017:384-395. [85] 田文洪,曾柯铭,莫中勤,等.基于卷积神经网络的驾驶员不安全行为识别[J].电子科技大学学报,2019,48(3):381-387. TIAN W H,ZENG K M,MO Z Q,et al.Recognition of unsafe driving behaviors based on convolutional neural network[J].Journal of University of Electronic Science and Technology,2019,48 (3):381-387. [86] CHEN G,LV F,ZHAN Y,et al.Seatbelt recognition method based on convolutional attention mechanism[C]//2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology(CCET),Beijing,2019:187-192. [87] ?ENER A ?,INCE I F,BAYDARGIL H B,et al.Deep learning based automatic vertical height adjustment of incorrectly fastened seat belts for driver and passenger safety in fleet vehicles[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2022,236(4):639-654. [88] NAIK D S B,LAKSHMI G S,SAJJA V R,et al.Driver’s seat belt detection using CNN[J].Turkish Journal of Computer and Mathematics Education(TURCOMAT),2021,12(5):776-785. [89] BALTAXE M,MERGUI R,NISTEL K,et al.Marker-less vision-based detection of improper seat belt routing[C]//2019 IEEE Intelligent Vehicles Symposium(IV),Paris,2019:783-789. [90] HOSAM O.Deep learning-based car seatbelt classifier resilient to weather conditions[J].Int J Eng Technol,2020,9(1):229-237. [91] MADURI P K,SINGH G,SHARMA S,et al.Seat belt and helmet detection using deep learning[C]//2021 3rd International Conference on Advances in Computing,Communication Control and Networking(ICAC3N),Shanghai,2021:476-480. [92] 杨凯杰,章东平,杨力.深度学习的汽车驾驶员安全带检测[J].中国计量大学学报,2017,28(3):326-333. YANG K J,ZHANG D P,YANG L.Safety belt detection based on deep learning[J].Journal of China University of Metrology,2017,28(3):326-333. [93] FERNANDEZ S M,BOSQUET B,MUCIENTES M,et al.Real-time visual detection and tracking system for traffic monitoring[J].Engineering Applications of Artificial Intelligence,2019,85:410-420. [94] ELIHOS A,ALKAN B,BALCI B,et al.Comparison of image classification and object detection for passenger seat belt violation detection using NIR & RGB surveillance camera images[C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS),2018:1-6. [95] BALCI B,ALKAN B,ELIHOS A,et al.NIR camera based mobile seat belt enforcement system using deep learning techniques[C]//2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS),Las Palmas de Gran Canaria,2018:247-252. [96] YANG D,ZANG Y,LIU Q.Study of detection method on real-time and high precision driver seatbelt[C]//2020 Chinese Control And Decision Conference(CCDC),Hefei,2020:79-86. [97] YANG T,YANG J,MENG J.Driver’s illegal driving behavior detection with SSD approach[C]//2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning(PRML),Chengdu,2021:109-114. [98] 吴天舒,张志佳,刘云鹏,等.结合YOLO检测和语义分割的驾驶员安全带检测[J].计算机辅助设计与图形学学报,2019,31(1):126-131. WU T S,ZHANG Z J,LIU Y P,et al.Driver seat belt detection based on YOLO detection and semantic segmentation[J].Journal of Computer-Aided Design and Computer Graphics,2019,31(1):126-131. [99] JING Y Q,WU T S,LI J,et al.GPU acceleration design method for driver’s seatbelt detection[C]//2019 14th IEEE International Conference on Electronic Measurement & Instruments(ICEMI),Changsha,2019:949-953. [100] WU T S,ZHANG Z J,LIU Z M,et al.Detection and implementation of Driver’s seatbelt based on FPGA[J].Journal of Physics:Conference Series,2019,1229(1):012075. [101] KASHEVNIK A,ALI A,LASHKOV I,et al.Seat belt fastness detection based on image analysis from vehicle in-cabin camera[C]//2020 26th Conference of Open Innovations Association(FRUCT),Yaroslavl,2020:143-150. [102] WANG D.Intelligent detection of vehicle driving safety based on deep learning[J].Wireless Communications & Mobile Computing,2022,2022:1095524. [103] ?OROVI? A,ILI? V,DURI? S,et al.The real-time detection of traffic participants using YOLO algorithm[C]//2018 26th Telecommunications Forum(TELFOR),Belgrade,2018:1-4. [104] 田坤,李冠,赵卫东.基于YOLO和极限学习机的驾驶员安全带检测模型研究[J].计算机应用与软件,2019,36(11):196-201. TIAN K,LI G,ZHAO W D.Driver’s seatbelt detection based on YOLO and extreme learning machine[J].Computer Applications and Software,2019,36(11):196-201. [105] MATHEW A T,THOMAS C M,KRISHNAN A G,et al.Automated censorable content identification in videos using deep learning[C]//2020 International Conference on Data Analytics for Business and Industry:Way Towards a Sustainable Economy(ICDABI),Da Nang,2020:1-6. [106] LUO J,LU J,YUE G.Seatbelt detection in road surveillance images based on improved dense residual network with two-level attention mechanism[J].Journal of Electronic Imaging,2021,30(3):033036. [107] WANG Z,MA Y.Detection and recognition of stationary vehicles and seat belts in intelligent Internet of Things traffic management system[J].Neural Computing and Applications,2022,34(5):3513-3522. [108] KHALID S B,HAZELA B.Employing real-time object detection for traffic monitoring[C]//Proceedings of the International Conference on Innovative Computing & Communication(ICICC),Xiamen,2021. [109] 谷玉海,曹梦婷,修嘉芸,等.基于YOLOv4网络的违章行为检测算法[J].重庆理工大学学报(自然科学),2021,35(8):114-121. GU Y H,CAO M T,XIU J Y,et al.Algorithm for detecting violations based on YOLOv4 network[J].Journal of Chongqing University of Technology(Natural Science),2021,35(8):114-121. [110] HOSSEINI S,FATHI A.Automatic detection of vehicle occupancy and driver’s seat belt status using deep learning[J].Signal,Image and Video Processing,2022:1-9. [111] YI Q,YI Q.Safety belt wearing detection algorithm based on human joint points[C]//2021 IEEE International Conference on Consumer Electronics and Computer Engineering(ICCECE),Nanchang,2021:538-541. [112] KIM G,KIM H,KIM K,et al.Integrated in-vehicle monitoring system using 3D human pose estimation and seat belt segmentation[J].arXiv:2204.07946,2022. |
[1] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[2] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[3] | 蔡正奕, 赵杰煜, 朱峰. 融合图像特征的单阶段点云目标检测[J]. 计算机工程与应用, 2023, 59(9): 140-149. |
[4] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[5] | 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206. |
[6] | 李坤亚, 欧鸥, 刘广滨, 于泽峰, 李林. 改进YOLOv5的遥感图像目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 207-214. |
[7] | 黄磊, 杨媛, 杨成煜, 杨威, 李耀华. FS-YOLOv5:轻量化红外目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 215-224. |
[8] | 李文举, 储王慧, 崔柳, 苏攀, 张干. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237-244. |
[9] | 张婷, 张兴忠, 王慧民, 杨罡, 王大伟. 基于图神经网络的变电站场景三维目标检测[J]. 计算机工程与应用, 2023, 59(9): 329-336. |
[10] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[11] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[12] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[13] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[14] | 张朝阳, 张上, 王恒涛, 冉秀康. 多尺度下遥感小目标多头注意力检测[J]. 计算机工程与应用, 2023, 59(8): 227-238. |
[15] | 李阿标, 郭浩, 戚畅, 安居白. 复杂背景下遥感图像密集目标检测[J]. 计算机工程与应用, 2023, 59(8): 247-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||