计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (16): 187-195.DOI: 10.3778/j.issn.1002-8331.2211-0132
郭迎,梁睿琳,王润民
GUO Ying, LIANG Ruilin, WANG Runmin
摘要: 针对自动驾驶车辆视觉感知系统在雾天条件下捕获图像质量较低,造成目标检测算法精度下降的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)图像增强的跨域自适应雾天目标检测方法。构建一个端到端目标检测网络,融合数字图像处理技术(digital image processing,DIP)和CNN的自适应图像增强模块,通过小型CNN参数预测器自适应学习增强参数,提升雾天图像质量;进一步地,将多尺度领域自适应(domain adaptive,DA)模块与YOLOv4主干网络相连,通过对抗训练减少由雾天造成的领域差异,提高雾天目标检测精度。在训练阶段,所提方法以端到端的方式学习CNN、DA模块以及YOLOv4,而在目标检测阶段将移除CNN及DA模块,仅使用预训练权重在正常天气和雾天天气自适应地检测图像,不会增加原有网络复杂性,从而保证自动驾驶车辆的实时性要求。在公开数据集Foggy Cityscapes上的实验表明,采用所提方法使雾天图像质量显著增强,目标检测平均精度提升了10.4%,有效提升了雾天条件下自动驾驶车辆对目标的识别能力。