计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (13): 156-163.DOI: 10.3778/j.issn.1002-8331.2203-0425
刘艺博,奚峥皓
LIU Yibo, XI Zhenghao
摘要: 针对多目标跟踪领域中由目标信息关联性低引起的目标身份关联性差的问题,提出了一种基于关键点检测和关联的多目标跟踪算法。对目标的中心关键点建模,利用CenterNet对该点进行检测定位;将目标的深度特征与关键点尺度特征相结合,基于二者观测的显隐性关系构建一个联合特征提取器;将该联合特征作为目标的状态,通过隐马尔可夫模型估计下一帧的目标状态;利用目标的运动信息和关键点尺度信息提出“二级关联”的匹配机制,实现对该估计状态与检测目标的关联,得到最优的关联匹配结果。在公开的MOT17数据集上进行了仿真实验,并与一些主流算法进行了对比,结果表明,该算法在跟踪准确度指标表现较优,并对身份互换问题有较好的鲁棒性。