计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (8): 1-12.DOI: 10.3778/j.issn.1002-8331.2210-0063
刘华玲,皮常鹏,赵晨宇,乔梁
出版日期:
2023-04-15
发布日期:
2023-04-15
LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang
Online:
2023-04-15
Published:
2023-04-15
摘要: 近年来,基于深度学习的目标检测算法在自动驾驶、人机交互等众多域上有着成功的应用,且因其检测性能较高引起学者的广泛关注。传统的深度学习方法一般基于源域与目标域服从同一分布的假设,但该假设不具备现实性,严重地降低了模型的泛化性能。如何对齐源域与目标域的分布,提高目标检测模型的泛化性成为近两年的研究热点。对跨域目标检测算法进行了综述,介绍了跨域目标检测的预备知识:深度域适应和目标检测,将跨域目标检测分解为两个子问题进行了概述,从底层逻辑理解其发展进程;给出了跨域目标检测算法的最新进展,从差异、对抗、重构、混合和其他等几个分类角度切入,梳理了每个类别的研究脉络并对比了在不同数据集上的性能;通过对目前跨域目标检测算法的梳理和总结,就其未来的研究方向进行展望。
刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12.
LIU Hualing, PI Changpeng, ZHAO Chenyu, QIAO Liang. Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation[J]. Computer Engineering and Applications, 2023, 59(8): 1-12.
[1] 范苍宁,刘鹏,肖婷,等.深度域适应综述:一般情况与复杂情况[J].自动化学报,2021,47(3):515-548. FAN C N,LIU P,XIAO T,et al.A review of deep domain adaptation:general situation and complex situation[J].Acta Automatica Sinica,2021,47(3):515-548. [2] LONG M,CAO Y,WANG J,et al.Learning transferable features with deep adaptation networks[C]//International Conference on Machine Learning,2015:97-105. [3] PEI Z,CAO Z,LONG M,et al.Multi-adversarial domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [4] BOUSMALIS K,TRIGEORGIS G,SILBERMAN N,et al.Domain separation networks[J].arXiv:1608.06019,2016. [5] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2223-2232. [6] GHIFARY M,KLEIJN W B,ZHANG M.Domain adaptive neural networks for object recognition[C]//Pacific Rim International Conference on Artificial Intelligence.Cham:Springer,2014:898-904. [7] TZENG E,HOFFMAN J,ZHANG N,et al.Deep domain confusion:maximizing for domain invariance[J].arXiv:1412.3474,2014. [8] SUN B,FENG J,SAENKO K.Return of frustratingly easy domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2016. [9] SUN B,SAENKO K.Deep coral:correlation alignment for deep domain adaptation[C]//European Conference on Computer Vision.Cham:Springer,2016:443-450. [10] CHEN C,CHEN Z,JIANG B,et al.Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:3296-3303. [11] ZELLINGER W,GRUBINGER T,LUGHOFER E,et al.Central moment discrepancy (cmd) for domain-invariant representation learning[J].arXiv:1702.08811,2017. [12] DAMODARAN B B,KELLENBERGER B,FLAMARY R,et al.Deepjdot:deep joint distribution optimal transport for unsupervised domain adaptation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:447-463. [13] SHEN J,QU Y,ZHANG W,et al.Wasserstein distance guided representation learning for domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018. [14] ROZANTSEV A,SALZMANN M,FUA P.Beyond sharing weights for deep domain adaptation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(4):801-814. [15] SHU X,QI G J,TANG J,et al.Weakly-shared deep transfer networks for heterogeneous-domain knowledge propagation[C]//Proceedings of the 23rd ACM International Conference on Multimedia,2015:35-44. [16] XU S H,MU X D,CHAI D,et al.Domain adaption algorithm with ELM parameter transfer[J].Acta Autom Sin,2018,44:311-317. [17] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning,2015:448-456. [18] CHANG W G,YOU T,SEO S,et al.Domain-specific batch normalization for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7354-7362. [19] ROY S,SIAROHIN A,SANGINETO E,et al.Unsupervised domain adaptation using feature-whitening and consensus loss[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:9471-9480. [20] LI Y,WANG N,SHI J,et al.Revisiting batch normalization for practical domain adaptation[J].arXiv:1603.04779,2016. [21] ULYANOV D,VEDALDI A,LEMPITSKY V.Improved texture networks:maximizing quality and diversity in feed-forward stylization and texture synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:6924-6932. [22] GOPALAN R,LI R,CHELLAPPA R.Domain adaptation for object recognition:an unsupervised approach[C]//2011 International Conference on Computer Vision,2011:999-1006. [23] GONG B,SHI Y,SHA F,et al.Geodesic flow kernel for unsupervised domain adaptation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition,2012:2066-2073. [24] CHOPRA S,BALAKRISHNAN S,GOPALAN R.Dlid:deep learning for domain adaptation by interpolating between domains[C]//ICML Workshop on Challenges in Representation Learning,2013. [25] GONG R,LI W,CHEN Y,et al.Dlow:domain flow for adaptation and generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:2477-2486. [26] XU X,ZHOU X,VENKATESAN R,et al.d-SNE:domain adaptation using stochastic neighborhood embedding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:2497-2506. [27] YANG B,YUEN P C.Cross-domain visual representations via unsupervised graph alignment[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:5613-5620. [28] MA X,ZHANG T,XU C.Gcan:graph convolutional adversarial network for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:8266-8276. [29] YANG Z,ZHAO J J,DHINGRA B,et al.Glomo:unsupervised learning of transferable relational graphs[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems,2018:8964-8975. [30] GANIN Y,LEMPITSKY V.Unsupervised domain adaptation by backpropagation[C]//International Conference on Machine Learning,2015:1180-1189. [31] CHEN X,WANG S,LONG M,et al.Transferability vs.discriminability:batch spectral penalization for adversarial domain adaptation[C]//International Conference on Machine Learning,2019:1081-1090. [32] TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7167-7176. [33] VOLPI R,MORERIO P,SAVARESE S,et al.Adversarial feature augmentation for unsupervised domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:5495-5504. [34] LONG M,CAO Z,WANG J,et al.Conditional adversarial domain adaptation[J].arXiv:1705.10667,2017. [35] TZENG E,HOFFMAN J,DARRELL T,et al.Simultaneous deep transfer across domains and tasks[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:4068-4076. [36] BENGIO Y.Learning deep architectures for AI[M].[S.l.]:Now Publishers Inc,2009. [37] GLOROT X,BORDES A,BENGIO Y.Domain adaptation for large-scale sentiment classification:a deep learning approach[C]//International Conference on Machine Learning,2011. [38] CHEN M,XU Z,WEINBERGER K,et al.Marginalized denoising autoencoders for domain adaptation[J].arXiv:1206.4683,2012. [39] GHIFARY M,KLEIJN W B,ZHANG M,et al.Deep reconstruction-classification networks for unsupervised domain adaptation[C]//European Conference on Computer Vision.Cham:Springer,2016:597-613. [40] ZHUANG F,CHENG X,LUO P,et al.Supervised representation learning:transfer learning with deep autoencoders[C]//Twenty-Fourth International Joint Conference on Artificial Intelligence,2015. [41] SUN R,ZHU X,WU C,et al.Not all areas are equal:transfer learning for semantic segmentation via hierarchical region selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4360-4369. [42] TSAI J C,CHIEN J T.Adversarial domain separation and adaptation[C]//2017 IEEE 27th International Workshop on Machine Learning for Signal Processing(MLSP),2017:1-6. [43] ZHAO A,DING M,GUAN J,et al.Domain-invariant projection learning for zero-shot recognition[J].arXiv:1810.08326,2018. [44] LIU M Y,TUZEL O.Coupled generative adversarial networks[J].arXiv:1606.07536,2016. [45] XIA Y,HE D,QIN T,et al.Dual learning for machine translation[J].arXiv:1611.00179,2016. [46] YI Z,ZHANG H,TAN P,et al.Dualgan:unsupervised dual learning for image-to-image translation[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2849-2857. [47] KIM T,CHA M,KIM H,et al.Learning to discover cross-domain relations with generative adversarial networks[C]//International Conference on Machine Learning,2017:1857-1865. [48] SANKARANARAYANAN S,BALAJI Y,CASTILLO C D,et al.Generate to adapt:aligning domains using generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8503-8512. [49] DOLLáR P,WOJEK C,SCHIELE B,et al.Pedestrian detection:a benchmark[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition,2009:304-311. [50] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171. [51] VEDALDI A,GULSHAN V,VARMA M,et al.Multiple kernels for object detection[C]//2009 IEEE 12th International Conference on Computer Vision,2009:606-613. [52] YU Y,ZHANG J,HUANG Y,et al.Object detection by context and boosted HOG-LBP[C]//ECCV Workshop on PASCAL VOC,2010. [53] ZITNICK C L,DOLLáR P.Edge boxes:locating object proposals from edges[C]//European Conference on Computer Vision.Cham:Springer,2014:391-405. [54] SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].arXiv:1312.6229,2013. [55] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [56] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [57] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448. [58] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149. [59] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[J].arXiv:1605. 06409,2016. [60] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2961-2969. [61] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [62] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [63] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [64] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [65] JOCHER G,NISHIMURA K,MINEEVA T,et al.Yolov5[EB/OL].[2022-08-10].https://github.com/ultralytics/yolov5. [66] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [67] FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [68] JEONG J,PARK H,KWAK N.Enhancement of SSD by concatenating feature maps for object detection[J].arXiv:1705.09587,2017. [69] LI Z,ZHOU F.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [70] SHEN Z,LIU Z,LI J,et al.DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1919-1927. [71] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [72] KHODABANDEH M,VAHDAT A,RANJBAR M,et al.A robust learning approach to domain adaptive object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:480-490. [73] CAI Q,PAN Y,NGO C W,et al.Exploring object relation in mean teacher for cross-domain detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:11457-11466. [74] 冯佳伟,褚晶辉,吕卫.基于跨域学习的单样本目标检测方法[J].激光与光电子学进展:1-12[2022-08-10].http://kns.cnki.net/kcms/detail/31.1690.TN.20220713.1451.440.html. FENG J W,CHU J H,LV W.One-shot object detection based on cross-domain learning[J].Laser & Optoelectronics Progress:1-12[2022-08-10].http://kns.cnki.net/kcms/detail/31.1690.TN.20220713.1451.440.html. [75] 郭强,浦世亮,张世峰,等.适合跨域目标检测的雾霾图像增强[J].中国图象图形学报,2022,27(5):1481-1492. GUO Q,PU S L,ZHANG S F,et al.Cross-domain object detection based foggy image enhancement[J].Journal of Image and Craphics,2022,27(5):1481-1492. [76] CHEN Y,LI W,SAKARIDIS C,et al.Domain adaptive faster R-CNN for object detection in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3339-3348. [77] ZHU X,PANG J,YANG C,et al.Adapting object detectors via selective cross-domain alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:687-696. [78] 秦雨欣.遥感图像中跨域目标检测研究[D].北京:北方工业大学,2022. QIN Y X.Research on cross-domain object detection in remote sensing images[D].Beijing:North China University of Technology,2022. [79] LI Y Z,DAI X,MA C Y,et al.Cross-domain object detection via adaptive selftraining[J].arXiv:2111.13216,2021. [80] FUJII K,KERA H,KAWAMOTO K.Adversarially trained object detector for unsupervised domain adaptation[J].arXiv:2109.05751,2021. [81] ZHUANG C,HAN X,HUANG W,et al.iFAN:image-instance full alignment networks for adaptive object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:13122-13129. [82] CHEN C,ZHENG Z,DING X,et al.Harmonizing transferability and discriminability for adapting object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:8869-8878. [83] 胡杰,徐博远,熊宗权,等.基于多尺度掩码分类域自适应网络的跨域目标检测算法[J].汽车工程,2022,44(9):1327-1338. HU J,XU B Y,XIONG Z Q,et al.Cross-domain object detection algorithm based on multi-scale mask classification domain adaptive network[J].Automotive Engineering,2022,44(9):1327-1338. [84] LIN C T.Cross domain adaptation for on-road object detection using multimodal structure-consistent image-to-image translation[C]//2019 IEEE International Conference on Image Processing(ICIP),2019:3029-3030. [85] LIU S,JOHN V,BLASCH E,et al.IR2VI:enhanced night environmental perception by unsupervised thermal image translation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2018:1153-1160. [86] ARRUDA V F,BERRIEL R F,PAIX?O T M,et al.Cross-domain object detection using unsupervised image translation[J].Expert Systems with Applications,2022,192:116334. [87] 谢光达,李洋,曲洪权,等.基于改进Transformer的小目标车辆精确检测算法[J].激光与光电子学进展,2022,59(18):364-371. XIE G D,LI Y,QU H Q,et al.Small target accurate vehicle detection algorithm based on improved transformer[J].Laser and Optoelectronics Progress,2022,59(18):364-371. [88] 那峙雄,樊涛,孙涛,等.多损失融合的小样本光伏组件隐裂检测算法[J].计算机科学与探索,2022,16(2):458-467. NA Z X,FAN T,SUN T,et al.Micro-cracks detection of solar cells based on few shot samples with multi-loss[J].Journal of Frontiers of Computer Science and Technology,2022,16(2):458-467. [89] INOUE N,FURUTA R,YAMASAKI T,et al.Cross-domain weakly-supervised object detection through progressive domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:5001-5009. [90] YU F,WANG D,CHEN Y,et al.Unsupervised domain adaptation for object detection via cross-domain semi-supervised learning[J].arXiv:1911.07158,2019. [91] ZHENG Y,HUANG D,LIU S,et al.Cross-domain object detection through coarse-to-fine feature adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:13766-13775. [92] KIM S,CHOI J,KIM T,et al.Self-training and adversarial background regularization for unsupervised domain adaptive one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6092-6101. [93] HSU H K,YAO C H,TSAI Y H,et al.Progressive domain adaptation for object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:749-757. [94] 范佳琦.基于生成对抗网络的智能汽车跨域检测算法研究[D].长春:吉林大学,2022. FAN J Q.Research on intelligent vehicle cross-domain detection algorithm based on generative adversarial network[D].Changchun:Jilin University,2022. [95] 吴泽远,朱明.基于图像风格迁移的端到端跨域目标检测[J].计算机系统应用,2021,30(1):194-199. WU Z Y,ZHU M.End-to-end cross-domain object detection based on image style transfer[J].Computer Systems & Applications,2021,30(1):194-199. [96] XU M,WANG H,NI B,et al.Cross-domain detection via graph-induced prototype alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:12355-12364. [97] XU C D,ZHAO X R,JIN X,et al.Exploring categorical regularization for domain adaptive object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11724-11733. |
[1] | 王彩玲, 闫晶晶, 张智栋. 基于多模态数据的人体行为识别方法研究综述[J]. 计算机工程与应用, 2024, 60(9): 1-18. |
[2] | 廉露, 田启川, 谭润, 张晓行. 基于神经网络的图像风格迁移研究进展[J]. 计算机工程与应用, 2024, 60(9): 30-47. |
[3] | 杨晨曦, 庄旭菲, 陈俊楠, 李衡. 基于深度学习的公交行驶轨迹预测研究综述[J]. 计算机工程与应用, 2024, 60(9): 65-78. |
[4] | 欧阳博, 朱勇建, 杨礼康, 王本源. FA-SORT:轻量化的多车辆跟踪算法[J]. 计算机工程与应用, 2024, 60(9): 122-134. |
[5] | 蔡腾, 陈慈发, 董方敏. 结合Transformer和动态特征融合的低照度目标检测[J]. 计算机工程与应用, 2024, 60(9): 135-141. |
[6] | 潘玮, 韦超, 钱春雨, 杨哲. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150. |
[7] | 宋建平, 王毅, 孙开伟, 刘期烈. 结合双曲图注意力网络与标签信息的短文本分类方法[J]. 计算机工程与应用, 2024, 60(9): 188-195. |
[8] | 车运龙, 袁亮, 孙丽慧. 基于强语义关键点采样的三维目标检测方法[J]. 计算机工程与应用, 2024, 60(9): 254-260. |
[9] | 邱云飞, 王宜帆. 双分支结构的多层级三维点云补全[J]. 计算机工程与应用, 2024, 60(9): 272-282. |
[10] | 叶彬, 朱兴帅, 姚康, 丁上上, 付威威. 面向桌面交互场景的双目深度测量方法[J]. 计算机工程与应用, 2024, 60(9): 283-291. |
[11] | 李钟华, 林初俊, 朱恒亮, 廖诗宇, 白云起. 基于结构感知和全局上下文信息的小目标检测[J]. 计算机工程与应用, 2024, 60(9): 292-298. |
[12] | 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15. |
[13] | 孙石磊, 李明, 刘静, 马金刚, 陈天真. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30. |
[14] | 汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[15] | 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||