计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (6): 30-44.DOI: 10.3778/j.issn.1002-8331.2205-0604
蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江
出版日期:
2023-03-15
发布日期:
2023-03-15
JIANG Xinlu, CHEN Tian’en, WANG Cong, LI Shuqin, ZHANG Hongming, ZHAO Chunjiang
Online:
2023-03-15
Published:
2023-03-15
摘要: 害虫检测是害虫测报的关键步骤,对于害虫防治具有重要意义,也是保证农作物产量和品质的前提。近年来,随着卷积神经网络的迅速发展,害虫检测技术进入智能化时代,使用深度学习相关技术实现精确的害虫检测已成为研究人员重点关注的课题。为了促进深度学习害虫检测技术的发展,对检测算法和现有数据集进行综述。总结了当前面临的数据匮乏、小目标检测、多尺度检测和密集与遮挡检测等四大难点问题,并分析了其主要成因。重点针对以上难点问题,总结归纳了近年来提出的深度学习害虫检测算法的改进策略和技术细节,以及面向实际场景的应用算法,对比分析了各类算法的性能表现、改进策略的适用场景及其优缺点。从面向复杂检测场景、解决数据匮乏问题、模型增量更新和应用落地等方面分析并展望了未来的研究趋势。
蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44.
JIANG Xinlu, CHEN Tian’en, WANG Cong, LI Shuqin, ZHANG Hongming, ZHAO Chunjiang. Survey of Deep Learning Algorithms for Agricultural Pest Detection[J]. Computer Engineering and Applications, 2023, 59(6): 30-44.
[1] 盛承发.间接性害虫为害与作物产量损失的关系Ⅰ.食叶害虫[J].应用生态学报,1993,4(2):192-197. SHENG C F.Relationship of crop yield to feeding injury by indirect insect and mite pests.I.Leaf eating insect pests[J].Chinese Journal of Applied Ecology,1993,4(2):192-197. [2] 2022年粮食作物重大病虫害呈重发态势[J].中国农资,2022(1):15. Major diseases and insect pests of food crops will be re-emerging in 2022[J].China Agri-Production News,2022(1):15. [3] 李改完,王艳,冀晓燕.基层病虫测报工作存在问题及对策[J].现代农村科技,2011(7):4-5. LI G W,WANG Y,JI X Y.Problems and countermeasures of grass-roots disease and insect forecasting work[J].Modern Rural Science and Technology,2011(7):4-5. [4] JúNIOR T D C,RIEDER R.Automatic identification of insects from digital images:a survey[J].Computers and Electronics in Agriculture,2020,178:105784. [5] LI W,ZHENG T,YANG Z,et al.Classification and detection of insects from field images using deep learning for smart pest management:a systematic review[J].Ecological Informatics,2021,66:101460. [6] LIU J,WANG X.Plant diseases and pests detection based on deep learning:a review[J].Plant Methods,2021,17(1):22. [7] WANG R,LIU L,XIE C,et al.AgriPest:a large-scale domain-specific benchmark dataset for practical agricultural pest detection in the wild[J].Sensors,2021,21(5):1601. [8] LI W,WANG D,LI M,et al.Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse[J].Computers and Electronics in Agriculture,2021,183:106048. [9] GEROVICHEV A,SADEH A,WINTER V,et al.High throughput data acquisition and deep learning for insect ecoinformatics[J].Frontiers in Ecology and Evolution,2021,9:600931. [10] RUSTIA D J A,CHAO J J,CHIU L Y,et al.Automatic greenhouse insect pest detection and recognition based on a cascaded deep learning classification method[J].Journal of Applied Entomology,2021,145(3):206-222. [11] WANG Q J,ZHANG S Y,DONG S F,et al.Pest24:a large-scale very small object data set of agricultural pests for multi-target detection[J].Computers and Electronics in Agriculture,2020,175:105585. [12] HUANG M L,CHUANG T C.A database of eight common tomato pest images[J/OL].Mendeley Data,2020.https://doi.org/10.17632/s62zm6djd2.1. [13] CHUDZIK P,MITCHELL A,ALKASEEM M,et al.Mobile real-time grasshopper detection and data aggregation framework[J].Scientific Reports,2020,10(1):1-10. [14] WU X,ZHAN C,LAI Y,et al.IP102:a large-scale benchmark dataset for insect pest recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:8779-8788. [15] SUN Y,LIU X,YUAN M,et al.Automatic in-trap pest detection using deep learning for pheromone-based dendroctonus valens monitoring[J].Biosystems Engineering,2018,176:140-150. [16] DU J,LIU L,LI R,et al.Towards densely clustered tiny pest detection in the wild environment[J].Neurocomputing,2022,490:400-412. [17] HE Y,ZHOU Z Y,TIAN L H,et al.Brown rice planthopper(Nilaparvata lugens Stal) detection based on deep learning[J].Precision Agriculture,2020,21(6):1385-1402. [18] LI R,WANG R,XIE C,et al.A coarse-to-fine network for aphid recognition and detection in the field[J].Biosystems Engineering,2019,187:39-52. [19] LIU Z,GAO J,YANG G,et al.Localization and classification of paddy field pests using a saliency map and deep convolutional neural network[J].Scientific Reports,2016,6:20410. [20] WANG R,JIAO L,XIE C,et al.S-RPN:sampling-balanced region proposal network for small crop pest detection[J].Computers and Electronics in Agriculture,2021,187:106290. [21] LIU L,WANG R,XIE C,et al.PestNet:an end-to-end deep learning approach for large-scale multi-class pest detection and classification[J].IEEE Access,2019,7:45301-45312. [22] ZHONG Y,GAO J,LEI Q,et al.A vision-based counting and recognition system for flying insects in intelligent agriculture[J].Sensors,2018,18(5):1489. [23] DONG S,WANG R,LIU K,et al.CRA-Net:a channel recalibration feature pyramid network for detecting small pests[J].Computers and Electronics in Agriculture,2021,191:106518. [24] DE CESARO JúNIOR T,RIEDER R,DI DOMêNICO J R,et al.InsectCV:a system for insect detection in the lab from trap images[J].Ecological Informatics,2022,67:101516. [25] ROOSJEN P P,KELLENBERGER B,KOOISTRA L,et al.Deep learning for automated detection of Drosophila suzukii:potential for UAV‐based monitoring[J].Pest Management Science,2020,76(9):2994-3002. [26] DING W,TAYLOR G.Automatic moth detection from trap images for pest management[J].Computers and Electronics in Agriculture,2016,123:17-28. [27] ALVARO F,SOOK Y,SANG C K,et al.A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J].Sensors,2017,17(9):2022. [28] LI R,WANG R,ZHANG J,et al.An effective data augmentation strategy for CNN-based pest localization and recognition in the field[J].IEEE Access,2019,7:160274-160283. [29] LI W,CHEN P,WANG B,et al.Automatic localization and count of agricultural crop pests based on an improved deep learning pipeline[J].Scientific Reports,2019,9(1):1-11. [30] WANG F,WANG R,XIE C,et al.Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition[J].Computers and Electronics in Agriculture,2020,169:105222. [31] ZHA M,QIAN W,YI W,et al.A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion[J].Entropy,2021,23(12):1587. [32] CHODEY M D,NOORULLAH SHARIFF C.Hybrid deep learning model for in-field pest detection on real-time field monitoring[J].Journal of Plant Diseases and Protection,2022:1-16. [33] 邓壮来,汪盼,宋雪桦,等.基于SSD的粮仓害虫检测研究[J].计算机工程与应用,2020,56(11):214-218. DENG Z L,WANG P,SONG X Y,et al.Research on granary pest detection based on SSD[J].Computer Engineering and Applications,2020,56(11):214-218. [34] 严礼伟.基于深度学习的植保无人机目标检测技术研究[D].西安:西安电子科技大学,2020. YAN L W.Research on target detection technology of plant protection UAV based on deep learning[D].Xi’an:Xidian University,2020. [35] RIOS J J C,VILLANUEVA E.Investigating generative neural-network models for building pest insect detectors in sticky trap images for the Peruvian horticulture[C]//NeurIPS 2021 Workshop LatinX in AI,2021. [36] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision,2014:740-755. [37] 梁鸿,王庆玮,张千,等.小目标检测技术研究综述[J].计算机工程与应用,2021,57(1):17-28. LIANG H,WANG Q W,ZHANG Q,et al.Small object detection technology:a review[J].Computer Engineering and Applications,2021,57(1):17-28. [38] 李颀.桃树病害和害虫图像检测系统的研究与实现[D].泰安:山东农业大学,2021. LI X.Research and implementation of image detection system for peach diseases and pests[D].Tai’an:Agricultural University,2021. [39] SHEN Y,ZHOU H,LI J,et al.Detection of stored-grain insects using deep learning[J].Computers and Electronics in Agriculture,2018,145:319-325. [40] CHEN Y S,HSU C S,LO C L.An entire-and-partial feature transfer learning approach for detecting the frequency of pest occurrence[J].IEEE Access,2020,8:92490-92502. [41] LIU L,XIE C,WANG R,et al.Deep learning based automatic multiclass wild pest monitoring approach using hybrid global and local activated features[J].IEEE Transactions on Industrial Informatics,2020,17(11):7589-7598. [42] JIAO L,XIE C,CHEN P,et al.Adaptive feature fusion pyramid network for multi-classes agricultural pest detection[J].Computers and Electronics in Agriculture,2022,195:106827. [43] 刘浏.基于深度学习的农作物害虫检测方法研究与应用[D].合肥:中国科学技术大学,2020. LIU L.Research and applications on agricultural crop pest detection techniques based on deep learning[D].Hefei:University of Science and Technology of China,2020. [44] JIAO L,DONG S,ZHANG S,et al.AF-RCNN:an anchor-free convolutional neural network for multi-categories agricultural pest detection[J].Computers and Electronics in Agriculture,2020,174:105522. [45] 盛家文.基于机器视觉的农业虫害测报研究[D].杭州:浙江理工大学,2020. SHENG J W.Research on agricultural pest survey based on machine vision[D].Hangzhou:Zhejiang Sci-Tech University,2020. [46] SHI Z,DANG H,LIU Z,et al.Detection and identification of stored-grain insects using deep learning:a more effective neural network[J].IEEE Access,2020,8:163703-163714. [47] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [48] WANG X,LIU J,ZHU X.Early real-time detection algorithm of tomato diseases and pests in the natural environment[J].Plant Methods,2021,17(1):43. [49] WANG X,XIAO T,JIANG Y,et al.Repulsion loss:detecting pedestrians in a crowd[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7774-7783. [50] 郭永坤,朱彦陈,刘莉萍,等.空频域图像增强方法研究综述[J].计算机工程与应用,2022,58(11):23-32. GUO Y K,ZHU Y C,LIU L P,et al.Research review of space-frequency domain image enhancement methods[J].Computer Engineering and Applications,2022,58(11):23-32. [51] YANG S,RAMANAN D.Multi-scale recognition with DAG-CNNs[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1215-1223. [52] HU P,RAMANAN D.Finding tiny faces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:951-959. [53] HU D,WANG L,JIANG W,et al.A novel image steganography method via deep convolutional generative adversarial networks[J].IEEE Access,2018,6:38303-38314. [54] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [55] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//International Conference on Machine Learning,2017:214-223. [56] KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [57] GHIASI G,CUI Y,SRINIVAS A,et al.Simple copy-paste is a strong data augmentation method for instance segmentation[J].arXiv:2012.07177,2020. [58] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [59] WU T,TANG S,ZHANG R,et al.Cgnet:a light-weight context guided network for semantic segmentation[J].IEEE Transactions on Image Processing,2020,30:1169-1179. [60] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [61] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[J].arXiv:1512.02325,2015. [62] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Boston,MA,2015:1-9. [63] LIU L,WANG R,XIE C,et al.Deep learning based automatic approach using hybrid global and local activated features towards large-scale multi-class pest monitoring[C]//2019 IEEE 17th International Conference on Industrial Informatics(INDIN),2019:1507-1510. [64] TAN M,PANG R,LE Q V.Efficientdet:scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10781-10790. [65] LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019. [66] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [67] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [68] BODLA N,SINGH B,CHELLAPPA R,et al.Soft-NMS-improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5561-5569. [69] HE Y,ZHANG X,SAVVIDES M,et al.Softer-nms:rethinking bounding box regression for accurate object detection[J].arXiv:1809.08545,2018. [70] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:761-769. [71] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems,2016. [72] XIE S,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1492-1500. [73] ALBANESE A,NARDELLO M,BRUNELLI D.Automated pest detection With DNN on the edge for precision agriculture[J].IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2021,11(3):458-467. [74] CHEN J W,LIN W J,CHENG H J,et al.A smartphone-based application for scale pest detection using multiple-object detection methods[J].Electronics,2021,10(4):372. [75] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [76] WANG F,WANG R,XIE C,et al.Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild environment[J].Computers and Electronics in Agriculture,2021,187:106268. [77] DEDRYVER C A,LE RALEC A,FABRE F.The conflicting relationships between aphids and men:a review of aphid damage and control strategies[J].Comptes Rendus Biologies,2010,333(6/7):539-553. [78] GUTIERREZ A,ANSUATEGI A,SUSPERREGI L,et al.A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases[J].Journal of Sensors,2019:1-15. [79] 祝钧桃,姚光乐,张葛祥,等.深度神经网络的小样本学习综述[J].计算机工程与应用,2021,57(7):22-33. ZHU J T,YAO G L,ZHANG G X,et al.Survey of few shot learning of deep neural network[J].Computer Engineering and Applications,2021,57(7):22-33. |
[1] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[2] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[3] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[4] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[5] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[6] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
[7] | 胡松松, 吴亮红, 张红强, 陈亮, 周博文, 张侣. 改进多尺度卷积结构与高斯核的E-CenterNet算法[J]. 计算机工程与应用, 2023, 59(6): 70-80. |
[8] | 江倩殷, 余志, 李熙莹. 标签差网络在噪声标签数据集中的应用[J]. 计算机工程与应用, 2023, 59(6): 92-100. |
[9] | 李宇, 韩晓红, 张玲, 张海轩, 李钢. 融合时空注意力机制的P波到时拾取网络[J]. 计算机工程与应用, 2023, 59(6): 113-124. |
[10] | 徐坚, 谢正光, 李洪均. 特征平衡的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 196-203. |
[11] | 吕晓玲, 杨胜月, 张明路, 梁明, 王俊超. 改进YOLOv5网络的鱼眼图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 241-250. |
[12] | 彭佩, 张美玲, 郑东. 融合CNN_LSTM的侧信道攻击[J]. 计算机工程与应用, 2023, 59(6): 268-276. |
[13] | 张诗慧, 罗晖, 裴莹玲, 余俊英, 徐杰. 基于改进RetinaNet的高铁无砟轨道板表面裂缝检测[J]. 计算机工程与应用, 2023, 59(6): 310-317. |
[14] | 孙书魁, 范菁, 李占稳, 曲金帅, 路佩东. 人工智能在新型冠状病毒肺炎中的研究综述[J]. 计算机工程与应用, 2023, 59(5): 28-39. |
[15] | 肖扬, 周军. 图像边缘检测综述[J]. 计算机工程与应用, 2023, 59(5): 40-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||