计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (6): 13-29.DOI: 10.3778/j.issn.1002-8331.2207-0434
高腾,张先武,李柏
出版日期:
2023-03-15
发布日期:
2023-03-15
GAO Teng, ZHANG Xianwu, LI Bai
Online:
2023-03-15
Published:
2023-03-15
摘要: 在深度学习的推动下,目标检测方法在工业安防领域取得了很大的进展,安全帽佩戴检测任务逐渐成为智能图像识别领域的一项重要研究课题。为了综合分析深度学习技术在安全帽佩戴检测任务中的研究现状,方便后续科研人员开展研究性工作。对近年来国内外学者在深度学习环境下的安全帽佩戴检测算法总结归纳,对比分析这些方法的优点和局限性。分别从数据集的建立和用途、安全帽佩戴检测主要检测算法归纳、当前安全帽佩戴检测领域的难点这三个方面进行分析。对安全帽佩戴检测领域未来的研究方向进行展望,并提出该领域今后研究重点。
高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29.
GAO Teng, ZHANG Xianwu, LI Bai. Review on Application of Deep Learning in Helmet Wearing Detection[J]. Computer Engineering and Applications, 2023, 59(6): 13-29.
[1] ZHOU X,WANG D,KRHENBüHL P.Objects as points[J].arXiv.1904.07850,2019. [2] 孙方伟,李承阳,谢永强,等.深度学习应用于遮挡目标检测算法综述[J].计算机科学与探索,2022,16(6):1243-1259. SUN F W,LI C Y,XIE Y Q,et al.Review of deep learning applied to occluded object detection[J].Journal of Frontiers of Computer Science and Technology,2022,16(6):1243-1259. [3] 邬开俊,黄涛,王迪聪,等.视频异常检测技术研究进展[J].计算机科学与探索,2022,16(3):529-540. WU K J,HUANG T,WANG D C,et al.Research progress of video anomaly detection technology[J].Journal of Frontiers of Computer Science and Technology,2022,16(3):529-540. [4] 董文轩,梁宏涛,刘国柱,等.深度卷积应用于目标检测算法综述[J].计算机科学与探索,2022,16(5):1025-1042. DONG W X,LIANG H T,LIU G Z,et al.Review of deep convolution applied to target detection algorithms[J].Journal of Frontiers of Computer Science and Technology,2022,16(5):1025-1042. [5] 张立艺,武文红,牛恒茂,等.深度学习中的安全帽检测算法应用研究综述[J].计算机工程与应用,2022,58(16):1-17. ZHANG L Y,WU W H,NIU H M,et al.Summary of application research on helmet detection algorithm based on deep learning[J].Computer Engineering and Applications,2022,58(16):1-17. [6] 李政谦,刘晖.基于深度学习的安全帽佩戴检测算法综述[J].计算机应用与软件,2022,39(6):194-202. LI Z Q,LIU H.Helmet wearing detection algorithm based on deep learning[J].Computer Applications and Software,2022,39(6):194-202. [7] EVERINGHAM M,GOOL L V,WILLIAMS C,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [8] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//13th European Conference on Computer Vision(ECCV),2014:740-755. [9] DENG J,DONG W,SOCHER R,et al.ImageNet:a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2009:248-255. [10] WEN P,TONG M,DENG Z,et al.Improved helmet wearing detection method based on YOLOv3[C]//International Conference on Artificial Intelligence and Security(ICAIC),2020:670-681. [11] FU D,GAO L,HU T,et al.Research on safety helmet detection algorithm of power workers based on improved YOLOv5[J].Journal of Physics:Conference Series,2022:012006. [12] 方明,孙腾腾,邵桢.基于改进YOLOv2的快速安全帽佩戴情况检测[J].光学精密工程,2019,27(5):1196-1205. FANG M,SUN T T,SHAO Z.Fast helmet-wearing condition detection based on improved YOLOv2[J].Optics and Precision Engineering,2019,27(5):1196-1205. [13] ZHANG W,YANG C F,JIANG F,et al.Safety helmet wearing detection based on image processing and deep learning[C]//2020 International Conference on Communications,Information System and Computer Engineering(CISCE),2020:343-347. [14] 熊江宜.基于深度学习的轻量级安全帽佩戴检测算法研究[D].荆州:长江大学,2021. XIONG J Y.A research on lightweight safety helmet detection algorithm based on deep learning[D].Jingzhou:Chang- jiang University,2021. [15] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//27th IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2014:580-587. [16] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision(ICCV),2015:1440-1448. [17] REN S Q,HE K M,SUN J,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [18] 张明媛,曹志颖,赵雪峰,等.基于深度学习的建筑工人安全帽佩戴识别研究[J].安全与环境学报,2019,19(2):535-541. ZHANG M Y,CAO Z Y,ZHAO X F,et al.On the identification of the safety helmet wearing manners for the construction company workers based on the deep learning theory[J].Journal of Safety and Environment,2019,19(2):535-541. [19] FANG Q,LUO X C,DING L Y,et al.Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J].Automation in Construction,2018,85:1-9. [20] ESPINOSA-OVIEDO J E,VELASTíN S A,BRANCH-BEDOYA J W.EspiNet V2:a region based deep learning model for detecting motorcycles in urban scenarios[J].Dyna,2019,86(211):317-326. [21] 孙国栋,李超,张航.融合自注意力机制的安全帽佩戴检测方法[J].计算机工程与应用,2022,58(20):300-304. SUN G D,LI C,ZHANG H.Safety helmet wearing detection method fused with self-attention mechanism[J].Computer Engineering and Applications,2022,58(20):300-304. [22] 徐守坤,王雅如,顾玉宛,等.基于改进Faster RCNN的安全帽佩戴检测研究[J].计算机应用研究,2020,37(3):901-905. XU S K,WANG Y R,GU Y W,et al.Safety helmet wearing detection study based on improved Faster RCNN[J].Application Research of Computers,2020,37(3):901-905. [23] 王慧.基于改进Faster R-CNN的安全帽检测及身份识别[D].西安:西安科技大学,2020. WANG H.Safety helmet detection and identification based on improved Faster R-CNN[D].Xi’an:Xi’an University of Science and Technology,2020. [24] CHEN S B,TANG W H,YANG Y O,et al.Detection of safety helmet wearing based on improved faster R-CNN[C]//2020 International Joint Conference on Neural Networks(IJCNN),2020:7-15. [25] 张博,宋元斌,熊若鑫,等.融合人体关节点的安全帽佩戴检测[J].中国安全科学学报,2020,30(2):177-182. ZHANG B,SONG Y B,XIONG R X,et al.Helmet-wearing detection considering human joint[J].China Safety Science Journal,2020,30(2):177-182. [26] 李鹏.基于目标检测与深度估计的施工现场安全预警关键技术研究与实现[D].成都:电子科技大学,2021. LI P.Research and implementation of key technology of on-site safety early warning based on object detection and depth estimation[D].Chengdu:University of Electronic Science and Technology,2021. [27] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:779-788. [28] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision Pattern Recognition(CVPR),2017:6517-6525. [29] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018. [30] 屈文谦,邱志斌,廖才波,等.基于YOLOv3的电网作业人员安全帽佩戴检测[J].中国安全生产科学技术,2022,18(2):214-219. QU W Q,QIU Z B,LIAO C B,et al.Detection on safety helmet wearing of power grid operators based on YOLOv3[J].Journal of Safety Science and Technology,2022,18(2):214-219. [31] 唐勇,巫思敏.YOLOv3在安全帽佩戴检测中的应用[J].现代信息科技,2021,5(23):88-95. TANG Y,WU S M.Application of YOLOv3 in safety helmet wearing detection[J].Modern Information Technology,2021,5(23):88-95. [32] 丁文龙,费树珉.基于改进YOLOv3的安全帽检测方法研究[J].电子测试,2022,36(11):84-86. DING W L,FEI S M.Research on safety helmet detection method based on improved YOLOv3[J].Electronic Test,2022,36(11):84-86. [33] CHENG R,HE X,ZHENG Z,et al.Multi-scale safety helmet detection based on SAS-YOLOv3-tiny[J].Applied Sciences,2021,11(8):3652. [34] HUANG L,FU Q,HE M,et al.Detection algorithm of safety helmet wearing based on deep learning[J].Concurrency and Computation:Practice and Experience,2021,33(13):e6234. [35] GENG R,MA Y,HUANG W.An improved helmet detection method for YOLOv3 on an unbalanced dataset[C]//2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication(CTISC),2021:328-332. [36] ZHAO B N,LAN H J,NIU Z W,et al.Detection and location of safety protective wear in power substation operation using wear-enhanced YOLOv3 algorithm[J].IEEE Access,2021(9):125540-125549. [37] 张学锋,王子琦,汤亚玲.基于YOLO-CDF神经网络的安全帽检测[J].重庆工商大学学报(自然科学版),2022,39(4):32-41. ZHANG X F,WANG Z Q,TANG Y L.Helmet detection based on YOLO-CDF neural network[J].Journal of Chong- qing Technology and Business University(Natural Science Edition),2022,39(4):32-41. [38] DENG L,LI H,LIU H,et al.A lightweight YOLOv3 algorithm used for safety helmet detection[J].Scientific Reports,2022,12(1). [39] 赵红成,田秀霞,杨泽森,等.改进YOLOv3的复杂施工环境下安全帽佩戴检测算法[J].中国安全科学学报,2022,32(5):194-200. ZHAO H C,TIAN X X,YANG Z S,et al.Safety helmet wearing detection algorithm in complex construction environment based on improved YOLOv3[J].China Safety Science Journal,2022,32(5):194-200. [40] 许凯,邓超.基于改进YOLOv3的安全帽佩戴识别算法[J].激光与光电子学进展,2021,58(6):300-307. XU K,DENG C.Research on helmet wear identification based on improved YOLOv3[J].Laser & Optoelectronics Progress,2021,58(6):300-307. [41] SONG H.Multi-scale safety helmet detection based on RSSE-YOLOv3[J].Sensors,2022,22(16):6061. [42] 邱浩然.基于改进YOLOv3的安全帽检测算法研究与实现[D].成都:西南交通大学,2020. QIU H R.Research and implementation of hard hat detection algorithm based on improved YOLOv3[D].Chengdu:Southwest Jiaotong University,2020. [43] 刘川.基于工程环境背景下安全帽佩戴检测算法研究[J].河南科技,2022,41(4):7-12. LIU C.Research on the algorithm of safety helmet wearing detection based on the background of engineering environment[J].Henan Science and Technology,2022,41(4):7-12. [44] 何超.基于改进YOLOv3的安全帽检测系统研究[D].武汉:华中科技大学,2019. HE C.Research on safety helmet detection system based on improved YOLOv3[D].Wuhan:Huazhong University of Science and Technology,2019. [45] WU F,JIN G,GAO M,et al.Helmet detection based on improved YOLO V3 deep model[C]//2019 IEEE 16th International Conference on Networking,Sensing and Control(ICNSC),2019:363-368. [46] WANG H K,HU Z Y,GUO Y J,et al.A real-time safety helmet wearing detection approach based on CSYOLOv3[J].Applied Sciences,2020,10(19):6732. [47] 刘增辉,和孙文,张社荣,等.基于改进YOLOv3的水电施工区安全佩戴检测方法[J].水力发电,2022,48(7):68-74. LIU Z H,HE S W,ZHANG S R,et al.Safety wearing detection method in hydropower construction area based on improved YOLOv3[J].Water Power,2022,48(7):68-74. [48] BOCHKOVSKIY A,WANG C Y,LIAO H.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [49] YUN Y L,JIANG W.Detection of wearing safety helmet for workers based on YOLOv4[C]//2021 International Conference on Computer Engineering and Artificial Intelligence(ICCEAI),2021:83-87. [50] LIU Y,JIANG W,ARTIFICIAL I.Detection of wearing safety helmet for workers based on YOLOv4[J].International Conference on Computer Engineering,2021:83-87. [51] 谢国波,唐晶晶,林志毅,等.复杂场景下的改进YOLOv4安全帽检测算法[J/OL].激光与光电子学进展:1-13[2022-10-20].http://kns.cnki.net/kcms/detail/31.1690.tn.20220714. 1254.291.html. XIE G B,TANG J J,LIN Z H,et al.Improved YOLOv4 helmet detection algorithm for complex scenarios[J/OL].Laser & Optoelectronics Progress:1-13[2022-10-20].http://kns.cnki.net/kcms/detail/31.1690.tn.20220714.1254.291.html. [52] ZENG L,DUAN X,PAN Y,et al.Research on the algorithm of helmet-wearing detection based on the optimized yolov4[J].The Visual Computer,2022:1-11. [53] 杨贞,朱强强,彭小宝,等.基于深度级联模型工业安全帽检测算法[J].计算机与现代化,2022(1):91-97. YANG Z,ZHU Q Q,PENG X B,et al.Industrial safety helmet detection algorithm based on depth cascade model[J].Computer and Modernization,2022(1):91-97. [54] 杨雪,陈刚.基于深度学习的移动端安全帽检测系统设计与实现[J].江苏通信,2022,38(2):103-106. YANG X,CHEN G.Design and implementation of mobile helmet detection system based on deep learning[J].Jiangsu Communication,2022,38(2):103-106. [55] 王雨晨,徐明昆.基于改进YOLOv4的安全帽佩戴检测算法[J].现代信息科技,2021,5(22):156-160. WANG Y C,XU M K.Safety helmet wearing detection algorithm based on improved YOLOv4[J].Modern Information Technology,2021,5(22):156-160. [56] 李帅,李丽宏,王素刚,等.改进YOLOv4算法的安全帽检测[J].现代电子技术,2022,45(3):103-110. LI S,LI L H,WANG S G,et al.Helmet detection based on improved YOLOv4 algorithm[J].Modern Electronics Technique,2022,45(3):103-110. [57] 郭奕裕,周箩鱼.安全帽佩戴检测网络模型的轻量化设计[J/OL].计算机工程:1-12[2022-10-20].DOI:10.19678/j.issn.1000-3428.0064219. GUO Y Y,ZHOU L Y.Lightweight design of safety helmet wearing detection network model[J/OL].Computer Engineering:1-12[2022-10-20].DOI:10.19678/j.issn.1000-3428.0064219. [58] 葛青青,张智杰,袁珑,等.融合环境特征与改进YOLOv4的安全帽佩戴检测[J].中国图象图形学报,2021,26(12):2904-2917. GE Q Q,ZHANG Z J,YUAN L,et al.Safety helmet wearing detection method of fusing environmental features and improved YOLOv4[J].Journal of Image and Graphics,2021,26(12):2904-2917. [59] 王晨,齐华,史建利.基于YOLOv4的安全帽佩戴检测及工种身份识别[J].计算机系统应用,2022,31(7):272-277. WANG C,QI H,SHI J L.Safety helmet wearing detection and type of work identification based on YOLOv4[J].Computer Systems and Applications,2022,31(7):272-277. [60] 张萌,韩豫,刘泽锋.深度学习下建筑工人高空安全防护装备检测方法[J].中国安全科学学报,2022,32(5):140-146. ZHANG M,HAN Y,LIU Z F.Detection method of high-altitude safety protective equipment for construction workers based on deep learning[J].China Safety Science Journal,2022,32(5):140-146. [61] GAO S,RUAN Y,WANG Y,et al.Safety helmet detection based on YOLOV4-M[C]//2022 IEEE International Conference on Artificial Intelligence and Computer Applications(ICAICA),2022:179-181. [62] ZHOU F,ZHAO H,NIE Z,et al.Safety helmet detection based on YOLOv5[C]//2021 IEEE International Conference on Power Electronics,Computer Applications(ICPECA),2021. [63] MA Y,FANG Y.Safety helmet wearing recognition based on YOLOv5[M]//Mobile wireless middleware,operating systems and applications.Cham:Springer,2022:137-150. [64] 朱晓春,陈子涛.基于改进型YOLO v5算法的安全帽佩戴检测[J].南京工程学院学报(自然科学版),2021,19(4):7-11. ZHU X C,CHEN Z T.Safety Helmet wearing detection based on improved YOLO v5[J].Journal of Nanjing Institute of Technology(Natural Science Edition),2021,19(4):7-11. [65] 张锦,屈佩琪,孙程,等.基于改进YOLOv5的安全帽佩戴检测方法[J/OL].计算机应用:1-11[2022-10-20].http://kns.cnki.net/kcms/detail/51.1307.TP.20210908.1727.002.html. ZHANG J,QU P Q,SUN C,et al.Safety helmet wearing detection method based on improved YOLOv5[J].Journal of Computer Applications:1-11[2022-10-20].http://kns.cnki.net/kcms/detail/51.1307.TP.20210908.1727.002.html. [66] 岳衡,黄晓明,林明辉,等.基于改进YOLOv5的安全帽佩戴检测[J].计算机与现代化,2022(6):104-108. YUE H,HUANG X M,LIN M H,et al.Helmet-wearing detection based on improved YOLOv5[J].Computer and Modernization,2022(6):104-108. [67] 杨永波,李栋.改进YOLOv5的轻量级安全帽佩戴检测算法[J].计算机工程与应用,2022,58(9):201-207. YANG Y B,LI D.Lightweight helmet wearing detection algorithm of improved YOLOv5[J].Computer Engineering and Applications,2022,58(9):201-207. [68] 王玲敏,段军,辛立伟.引入注意力机制的YOLOv5安全帽佩戴检测方法[J].计算机工程与应用,2022,58(9):303-312. WANG L M,DUAN J,XIN L W.YOLOv5 helmet wear detection method with introduction of attention mechanism[J].Computer Engineering and Applications,2022,58(9):303-312. [69] 蒋润熙,阿里甫·库尔班,耿丽婷.面向轻量化网络的安全帽检测算法[J].计算机工程与应用,2021,57(20):263-270. JIANG R X,ALIFU·KUERBAN,GENG L T.Safety helmet detection algorithm for lightweight network[J].Computer Engineering and Applications,2021,57(20):263-270. [70] WANG L,CAO Y,WANG S,et al.Investigation into recognition algorithm of helmet violation based on YOLOv5-CBAM-DCN[J].IEEE Access,2022,10:60622-60632. [71] XU Z P,ZHANG Y,CHENG J,et al.Safety helmet wearing detection based on YOLOv5 of attention mechanism[J].Journal of Physics:Conference Series,2022. [72] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,2016:21-37. [73] 岳诗琴,张乾,邵定琴,等.基于ResNet50-SSD的安全帽佩戴状态检测研究[J].长江信息通信,2021,34(3):86-89. YUE S Q,ZHANG Q,SHAO D Q,et al.Safety helmet wearing status detection study based on ResNet50-SSD[J].Changjiang Information & Communications,2021,34(3):86-89. [74] 徐先峰,赵万福,邹浩泉,等.基于MobileNet-SSD的安全帽佩戴检测算法[J].计算机工程,2021,47(10):298-305. XU X F,ZHAO W F,ZOU H Q.Detection algorithm of safety helmet wear based on MobileNet-SSD[J].Computer Engineering,2021,47(10):298-305. [75] DUAN K,BAI S,XIE L,et al.CenterNet:keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6569-6578. [76] 周敏新,张方舟,龚声蓉.基于新型特征融合的安全帽佩戴检测方法[J].计算机工程与设计,2021,42(11):3181-3187. ZHOU M X,ZHANG F Z,GONG S R.Detection of non-hardhat-use based on new feature fusion[J].Computer Engineering and Design,2021,42(11):3181-3187. [77] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017(99):2999-3007. [78] 王雨生,顾玉宛,封晓晨,等.基于姿态估计的安全帽佩戴检测方法研究[J].计算机应用研究,2021,38(3):937-940. WANG Y S,GU Y Y,FENG X C,et al.Research on detection method of helmet wearing based on attitude estimation[J].Application Research of Computers,2021,38(3):937-940. [79] 刘光品,刘云鹏,王仁芳.基于改进RetinaNet模型的室内安全帽佩戴检测研究[J].浙江万里学院学报,2020,33(6):97-103. LIU G P,LIU Y P,WANG R F.Research on indoor hard hat wear detection based on revised RetinaNet model[J].Journal of Zhejiang Wanli University,2020,33(6):97-103. [80] GE Z,LIU S,WANG F,et al.YOLOX:exceeding YOLO series in 2021[J].arXiv.2107.08430,2021. [81] 李骏峰,杨小军,张凯望.基于YOLOX-L算法的安全帽佩戴检测方法[J].计算机技术与发展,2022,32(9):100-106. LI J F,YANG X J,ZHANG K W.Safety helmet wearing detection method based on YOLOX-L algorithm[J].Computer Technology and Development,2022,32(9):100-106. [82] 丁田,陈向阳,周强,等.基于改进YOLOX的安全帽佩戴实时检测[J/OL].电子测量技术:1-6[2022-10-20].http://kns.cnki.net/kcms/detail/11.2175.TN.20220812.1637.022.html. DING T,CHEN X Y,ZHOU Q,et al.Real-time detection of helmet wearing based on improved YOLOX[J].Electronic Measurement Technology:1-6[2022-10-20].http://kns.cnki.net/kcms/detail/11.2175.TN.20220812.1637.022.html. [83] 程换新,蒋泽芹,程力,等.基于改进YOLOX-S的安全帽反光衣检测算法[J].电子测量技术,2022,45(6):130-135. GHENG H X,JIANG Z Q,CHENG L,et al.Helmet and reflective clothing detection algorithm based on improved YOLOX-S[J].Electronic Measurement Technology,2022,45(6):130-135. [84] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016. [85] HU J,SUN L,SHEN G,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017(99). [86] WOO S,PARK J,LEE J Y,et al.Cbam:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19. [87] HAN G,ZHU M C,ZHAO X C,et al.Method based on the cross-layer attention mechanism and multiscale perception for safety helmet-wearing detection[J].Computers and Electrical Engineering,2021,95:107458. [88] WANG H,KEMBHAVI A,FARHADI A,et al.ELASTIC:improving CNNs with dynamic scaling policies[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2019. [89] TAN S,LU G,JIANG Z,et al.Improving object detection with one line of code[C]//2021 IEEE International Conference on Intelligence and Safety for Robotics(ISR),2021. [90] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//The Thirty-Fourth AAAI Conference on Artificial Intelligence(AAAI-20),2019. [91] TAN S L,LU G L,JIANG Z Q,et al.Improved YOLOv5 network model and application in safety helmet detection[C]//2021 IEEE International Conference on Intelligence and Safety for Robotics(ISR),2021. [92] 罗舜,于娟.改进多尺度网络的行人目标检测算法[J].福州大学学报(自然科学版),2022(5):587-594. LUO S,YU J.Pedestrian target detection algorithm based on improved multi-scale network[J].Journal of Fuzhou University(Natural Science Edition),2022(5):587-594. [93] 王红梅,王晓鸽,王晓燕.基于深度学习的复杂背景下目标检测[J].控制与决策,2022,37(12):3115-3121. WANG H M,WANG X G,WANG X Y.Target detection under complex background based on deep learning[J].Control and Decision,2022,37(12):3115-3121. [94] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2016,63(11):139-144. [95] 郭师虹,井锦瑞,张潇丹,等.基于改进的YOLOv4安全帽佩戴检测研究[J].中国科学生产技术,2021,17(12):135-141. GUO S H,JING J R,ZHANG X D,et al.Research on detection of safety helmet wearing based on improved YOLOv4[J].Journal of Safety Science and Technology,2021,17(12):135-141. |
[1] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[2] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[3] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[4] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[5] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[6] | 蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44. |
[7] | 胡松松, 吴亮红, 张红强, 陈亮, 周博文, 张侣. 改进多尺度卷积结构与高斯核的E-CenterNet算法[J]. 计算机工程与应用, 2023, 59(6): 70-80. |
[8] | 江倩殷, 余志, 李熙莹. 标签差网络在噪声标签数据集中的应用[J]. 计算机工程与应用, 2023, 59(6): 92-100. |
[9] | 李宇, 韩晓红, 张玲, 张海轩, 李钢. 融合时空注意力机制的P波到时拾取网络[J]. 计算机工程与应用, 2023, 59(6): 113-124. |
[10] | 徐坚, 谢正光, 李洪均. 特征平衡的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 196-203. |
[11] | 吕晓玲, 杨胜月, 张明路, 梁明, 王俊超. 改进YOLOv5网络的鱼眼图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 241-250. |
[12] | 彭佩, 张美玲, 郑东. 融合CNN_LSTM的侧信道攻击[J]. 计算机工程与应用, 2023, 59(6): 268-276. |
[13] | 张诗慧, 罗晖, 裴莹玲, 余俊英, 徐杰. 基于改进RetinaNet的高铁无砟轨道板表面裂缝检测[J]. 计算机工程与应用, 2023, 59(6): 310-317. |
[14] | 孙书魁, 范菁, 李占稳, 曲金帅, 路佩东. 人工智能在新型冠状病毒肺炎中的研究综述[J]. 计算机工程与应用, 2023, 59(5): 28-39. |
[15] | 肖扬, 周军. 图像边缘检测综述[J]. 计算机工程与应用, 2023, 59(5): 40-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||