计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (3): 150-157.DOI: 10.3778/j.issn.1002-8331.2108-0353
郭鑫,高彩翔,陈千,王素格,王雪婧
GUO Xin, GAO Caixiang, CHEN Qian, WANG Suge, WANG Xuejing
摘要: 事件抽取是信息抽取领域的一个研究热点。在新冠肺炎疫情常态化下,利用事件抽取技术可以筛选出有价值的信息。然而事件抽取领域缺乏精标注的新冠新闻训练数据集,且因部分事件的复杂性,论元不只存在于一句话中,需要多个句子才能完整描述一个事件。因此,首先构建新冠肺炎新闻数据集,接着提出一种三阶段的管道方法实现从篇章中抽取新冠肺炎事件。该方法对数据集进行事件类型分类;进行事件句的抽取;实现篇章级论元抽取。实验结果表明提出的方法能够减少事件分类时间,抽取两个事件句的条件下,对数据通报类论元识别效果最好,准确率、召回率和F1值达到75.0%、73.0%,和74.0%,证明方法能有效抽取新冠肺炎相关篇章级事件。