计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (21): 91-97.DOI: 10.3778/j.issn.1002-8331.2112-0182
夏立斌,刘晓宇,孙玮,姜晓巍,孙功星
XIA Libin, LIU Xiaoyu, SUN Wei, JIANG Xiaowei, SUN Gongxing
摘要: 当今诸多工程问题及科学研究中,都面临着大数据处理和高性能计算任务的双重挑战。基于内存计算技术提出的分布式处理框架Spark已在学术和工业界得到了广泛的应用,但其MapReduce-like的编程模型在任务间无法进行通信,导致科学计算中的数值算法无法进行高效实现。针对上述问题,研究了一种Spark内存计算与MPI消息传递模型相结合的解决方案,充分利用内存访问存取快速的特点和MPI的多种高性能通信机制,解决了Spark编程模型表达能力不足的缺陷,同时为MPI提供了面向数据的DAG计算方式。通过对Spark内部的运行环境和调度系统进行修改,使得MPI在Spark中得以无缝融合,为高性能计算和大数据任务提供了一个统一的内存计算系统。测试结果表明,在数值计算和迭代算法上相比Spark至少有50%的性能提升。