计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (20): 247-254.DOI: 10.3778/j.issn.1002-8331.2112-0095
汪馨,姚念民,谭国真
WANG Xin, YAO Nianmin, TAN Guozhen
摘要: 传统批通知树(batch informed trees,BIT*)算法结合了RRT*算法和A*算法的优势,但是该算法在复杂环境下无法躲避未知的动态障碍物,无法完成动态路径规划。针对该问题,提出了一种将改进的BIT*算法和改进的DWA算法相融合的算法。在传统BIT*算法的基础上对路径进行拉伸优化,提取关键转折点,减少路径长度;对传统DWA算法的距离评价函数进行改进、引入轨迹点评价函数,避免局部规划过分偏离,也减少了已知障碍物对路径的影响;将改进的BIT*算法与改进的DWA算法相融合,将提取的关键转折点作为DWA的中间目标点,弥补全局规划算法无法躲避动态障碍物的缺点以及局部规划算法全局能力低下的缺点。在动静态地图中对RRT*算法、BIT*算法、DWA算法、改进BIT*算法以及融合算法进行仿真实验,仿真结果表明:在复杂环境中,改进的BIT*算法具有更短的路径和更少的拐点;与传统的DWA算法相比,融合算法规划的路线更平滑,机器人既能实时动态避障抵达终点,又能更加贴近全局路径,保证路线全局最优。