计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (18): 205-217.DOI: 10.3778/j.issn.1002-8331.2102-0043
解梦达,孙鹏,张志豪,郎宇博,周纯冰,单大国
XIE Mengda, SUN Peng, ZHANG Zhihao, LANG Yubo, ZHOU Chunbing, SHAN Daguo
摘要: 针对人脸追踪过程中,基于目标色彩特征的CamShift(continuously adaptive mean-shift)算法受类肤色背景干扰所导致的搜索框偏移及尺寸异常问题,提出了一种结合肤色分割及追踪监测机制的人脸追踪改进算法。在YCbCr色彩空间的Cb、Cr分量内采用非参数肤色分割模型及SVM(support vector machines)构建特定于当前视频序列的联合肤色分割模型,以由粗至细的方式去除视频帧中类肤色背景。随后,在Cr分量内构建CamShift算法色彩直方图并进行人脸追踪。考虑在追踪过程中,当场景或光照强度改变时易出现的联合肤色分割模型及CamShift算法色彩直方图失效问题,采用拉依达准则(pauta criterion)判断追踪窗口内Cr分量均值的异常,当监测到异常值时即判定当前视频帧人脸追踪失败,使用Adaboost(adaptive boosting)算法构建的人脸检测器进行人脸复检并重构CamShift算法色彩直方图及联合肤色分割模型。在OTB-2015目标追踪数据集中进行测试,实验结果表明,所提算法在类肤色背景下相比原始CamShift算法对人脸目标的追踪精度更高;相比近几年的追踪算法则在具有良好追踪精度的同时速度优势明显。