计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 204-212.DOI: 10.3778/j.issn.1002-8331.2201-0067
张灵灵,王鹏,李晓艳,吕志刚,邸若海
ZHANG Lingling, WANG Peng, LI Xiaoyan, LYU Zhigang, DI Ruohai
摘要: 针对浅层特征缺乏语义信息和小目标特征不显著的问题,提出了一种基于多尺度特征融合和注意力的低空无人机(unmanned aerial vehicle,UAV)检测方法。首先提出一种多尺度特征融合模块,将不同尺度的特征图进行有效融合,使浅层特征图的细节纹理信息和深层特征图的语义信息得到充分的利用,改善浅层特征语义信息不足的问题。然后在网络特征图输出处引入一种不降维局部跨信道交互策略和核大小自适应选择的通道注意力机制,以极其轻量级的方式获取跨通道的交互信息。为使先验框和有效感受野匹配,优化默认框设置方法,更好地检测小目标。使用自制无人机数据集进行验证,结果表明改进后算法平均准确率为84.07%,比原始SSD(single shot multibox detector)算法提高了7.81个百分点,检测速度达到31.3?frame/s。