计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 194-203.DOI: 10.3778/j.issn.1002-8331.2202-0210
邢晋超,潘广贞
XING Jinchao, PAN Guangzhen
摘要: 为解决健全人士与听障人士交互信息困难的问题,提出一种改进YOLOv5s网络模型的手语识别网络。应用[K]-means++算法提高先验锚框的尺寸匹配度,确定了最优先验锚框尺寸,实现先验锚框与实际物体的精确匹配;改进CBAM(convolution block attention module)注意力机制的通道域,解决其因降维而造成的通道信息缺失问题,并将改进后的CBAM加入到YOLOv5s的骨干网络中,使模型更加精准地定位和识别到关键的目标。将Cross Entropy Loss和Lovasz-Softmax Loss加权结合使用,使得网络在模型训练过程中更加稳定地收敛,在精准率上也得到了一定的提升。实验结果表明,与原本的YOLOv5s模型相比,改进后网络模型的平均精度均值(mean average precision,mAP)、精准率和召回率分别提升了3.44个百分点、3.17个百分点、1.89个百分点,有效地提高了手语识别网络的检测精确度。