计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (15): 278-284.DOI: 10.3778/j.issn.1002-8331.2012-0245
张如涛,黄山,汪鸿浩
ZHANG Rutao, HUANG Shan, WANG Honghao
摘要: 道路场景下的语义分割是无人驾驶中关键的技术,也是计算机视觉中重要的一个领域,而传统的语义分割方法需要对训练数据进行像素级的标注,对数据的要求极高。针对这一问题,将改进的循环生成对抗网络(cycle-consistent adversarial networks,CycleGAN)用于道路场景语义分割,该网络避免了大量的像素级标注且不需要成对的数据集,降低了数据集的要求。将原网络的目标函数用最小二乘损失和Smooth L1范数替代,增加了网络训练的稳定性且提高了生成图像的质量,并引入特征损失保证图像特征的保留,使得生成图像更加真实。使用道路场景分割中常用的Cityscapes数据集进行实验,并用语义分割领域常用的性能评价指标验证了方法的有效性,实验结果表明相较于原网络各性能都有一定提升。