计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (11): 215-223.DOI: 10.3778/j.issn.1002-8331.2108-0387
任鸿杰,刘萍,岱超,史俊才
REN Hongjie, LIU Ping, DAI Chao, SHI Juncai
摘要: 针对于当前遥感影像农作物提取存在的识别精度较低、边缘识别效果较差、提取速度慢等问题,提出了一种改进DeepLabV3+网络的遥感影像农作物分割方法。将特征提取网络改为更轻量级的MobileNetV2网络,空洞空间金字塔池化模块中的普通卷积改为深度可分离卷积,大幅减少模型计算量,提高模型计算速度;在特征提取模块以及空洞空间金字塔池化模块加入双注意力机制,进一步优化模型边缘识别效果,提升模型分割精度。此外针对农作物数据集类别不平衡问题,引入加权损失函数,给予玉米、薏米与背景类不同的权重,提高模型对农作物区域分割精度。以2019年某地区的无人机遥感影像为研究对象,对玉米、薏米两种农作物进行分割。实验结果表明,改进DeepLabV3+算法像素准确率可达到93.9%,平均召回率可达到90.7%,平均交并比可达到83.3%,优于传统DeepLabV3+、Unet、Segnet等常用于农作物提取的分割方法,对农作物具有更好的分割效果。