计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (8): 214-220.DOI: 10.3778/j.issn.1002-8331.2010-0011
王照乾,孔韦韦,滕金保,田乔鑫
WANG Zhaoqian, KONG Weiwei, TENG Jinbao, TIAN Qiaoxin
摘要: 针对低照度环境下采集图像存在低信噪比、低分辨率和低照度的问题,提出了一种基于稠密连接网络(DenseNet)生成对抗网络的低照度图像增强方法。利用DenseNet框架建立生成器网络,并将PatchGAN作为判别器网络;将低照度图像传入生成器网络生成照度增强图像,同时利用判别器网络负责监督生成器对低照度图像的增强效果,通过生成器和判别器二者间的博弈不断优化网络权重,最终使得生成器对低照度图像具有较好的增强效果。实验结果表明,该方法与现有主流方法相比较,不仅在对低照度图像亮度增强、清晰度还原等方面优势明显,且在峰值信噪比和结构相似度等图像质量客观评价指标方面也具有显著的优势。