计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (2): 289-294.DOI: 10.3778/j.issn.1002-8331.2008-0117
袁国文,张彩霞,杨阳,张文生,白江波
YUAN Guowen, ZHANG Caixia, YANG Yang, ZHANG Wensheng, BAI Jiangbo
摘要: 雷达图像目标检测是国家海洋军事和经济发展的重点研究领域。与被动成像的光学雷达相比,合成孔径雷达(synthetic aperture radar,SAR)由于其高分辨率、全天候、全天时、主动式等特点,成为20世纪以来多国雷达研究的重要组成部分。图像目标检测是雷达图像解译的基础。提出一种复杂场景下深度表示的SAR船舶目标检测算法,针对SAR图像目标检测模型无法专注困难样本以及解决FPN多尺度金字塔融合的问题,提出将Libra R-CNN网络与NAS-FPN特征提取网络相结合。其中Libra R-CNN网络在采样、特征、目标三种水平分别具有先进的IoU平衡采样、平衡特征金字塔、平衡L1损失方法,同时将Libra R-CNN模型中的FPN特征提取网络替换为在COCO数据集中借助神经架构搜索(neural architecture search,NAS)方法形成的7层NAS-FPN网络。模型最终在SAR船舶数据集中进行了对比实验,与原先的NAS-FPN网络相比,组合后的网络平均精度提高了4.4个百分点,证明了模型融合后的有效性。