计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (2): 43-56.DOI: 10.3778/j.issn.1002-8331.2103-0178
谢郭蓉,曲毅,蒋镕圻
XIE Guorong, QU Yi, JIANG Rongqi
摘要: 视觉目标跟踪任务中的遮挡问题是最具挑战的场景属性之一,研究有效的抗遮挡模型学习方案,对构建适应复杂场景的长期鲁棒跟踪模型具有重要意义。剖析了遮挡影响跟踪性能的本质原因,以抗遮挡性能较好的先进跟踪算法为研究对象,系统分析了模型学习中有效抗遮挡机制,并对其改善长短期遮挡问题的有效性进行比较分析,包括以硬负样本挖掘、有效样本管理、类遮挡硬正样本生成的训练样本提质策略,提供模型充足判别信息;以时间一致性学习、自适应外观学习的被动稳定学习方式和基于多域属性、目标感知、干扰感知、特征融合等适用跟踪任务的主动学习策略,构建可抵抗场景干扰、目标形变等因素可适用跟踪的鲁棒模型;以手工置信度评估、自适应决策、时序记忆库、自适应估计模板的更新策略,平衡模型在线跟踪状态变化目标的适应性与稳定性。通过对代表跟踪算法在遮挡及背景杂乱、出视野、平面内外旋转、形变场景下的性能比较,详尽分析了各策略抗遮挡有效性,指出相比更新策略,数据处理、学习策略设计更有利于提高抗遮挡性能;同时分析了各策略对长期遮挡、背景杂乱、出视野等属性的适用性及适用多类复杂场景的策略。总结了有效抗遮挡策略,提出骨干网替换及迁移场景理解、运动规律等先验信息至跟踪任务的研究方向。