计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (2): 43-56.DOI: 10.3778/j.issn.1002-8331.2103-0178
谢郭蓉,曲毅,蒋镕圻
出版日期:
2022-01-15
发布日期:
2022-01-18
XIE Guorong, QU Yi, JIANG Rongqi
Online:
2022-01-15
Published:
2022-01-18
摘要: 视觉目标跟踪任务中的遮挡问题是最具挑战的场景属性之一,研究有效的抗遮挡模型学习方案,对构建适应复杂场景的长期鲁棒跟踪模型具有重要意义。剖析了遮挡影响跟踪性能的本质原因,以抗遮挡性能较好的先进跟踪算法为研究对象,系统分析了模型学习中有效抗遮挡机制,并对其改善长短期遮挡问题的有效性进行比较分析,包括以硬负样本挖掘、有效样本管理、类遮挡硬正样本生成的训练样本提质策略,提供模型充足判别信息;以时间一致性学习、自适应外观学习的被动稳定学习方式和基于多域属性、目标感知、干扰感知、特征融合等适用跟踪任务的主动学习策略,构建可抵抗场景干扰、目标形变等因素可适用跟踪的鲁棒模型;以手工置信度评估、自适应决策、时序记忆库、自适应估计模板的更新策略,平衡模型在线跟踪状态变化目标的适应性与稳定性。通过对代表跟踪算法在遮挡及背景杂乱、出视野、平面内外旋转、形变场景下的性能比较,详尽分析了各策略抗遮挡有效性,指出相比更新策略,数据处理、学习策略设计更有利于提高抗遮挡性能;同时分析了各策略对长期遮挡、背景杂乱、出视野等属性的适用性及适用多类复杂场景的策略。总结了有效抗遮挡策略,提出骨干网替换及迁移场景理解、运动规律等先验信息至跟踪任务的研究方向。
谢郭蓉, 曲毅, 蒋镕圻. 抗遮挡目标跟踪的模型学习综述[J]. 计算机工程与应用, 2022, 58(2): 43-56.
XIE Guorong, QU Yi, JIANG Rongqi. Survey of Model Learning for Anti-occlusion Object Tracking[J]. Computer Engineering and Applications, 2022, 58(2): 43-56.
[1] 李玺,查宇飞,张天柱,等.深度学习的目标跟踪算法综述[J].中国图象图形学报,2019,24(12):2057-2080. LI X,CHA Y F,ZHANG T Z,et al.Survey of visual object tracking algorithms based on deep learning[J].Journal of Image and Graphics,2019,24(12):2057-2080. [2] SONG Y,MA C,WU X,et al.Vital:visual tracking via adversarial learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8990-8999. [3] LU X,MA C,NI B,et al.Deep regression tracking with shrinkage loss[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:353-369. [4] BHAT G,DANELLJAN M,GOOL L V,et al.Learning discriminative model prediction for tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6182-6191. [5] ZHU G,PORIKLI F,LI H.Robust visual tracking with deep convolutional neural network based object proposals on pets[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2016:26-33. [6] NAM H,HAN B.Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:4293-4302. [7] FAN H,LING H.Sanet:structure-aware network for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:42-49. [8] JUNG I,SON J,BAEK M,et al.Real-time MDNet[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:83-98. [9] KIANI GALOOGAHI H,FAGG A,LUCEY S.Learning background-aware correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1135-1143. [10] ZHU Z,WANG Q,LI B,et al.Distractor-aware Siamese networks for visual object tracking[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:101-117. [11] KIANI GALOOGAHI H,SIM T,LUCEY S.Correlation filters with limited boundaries[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:4630-4638. [12] BHAT G,JOHNANDER J,DANELLJAN M,et al.Unveiling the power of deep tracking[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:483-498. [13] ZHANG J,MA S,SCLAROFF S.MEEM:robust tracking via multiple experts using entropy minimization[C]//European Conference on Computer Vision.Cham:Springer,2014:188-203. [14] BOLME D S,BEVERIDGE J R,DRAPER B A,et al.Visual object tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2010:2544-2550. [15] SUPANCIC J S,RAMANAN D.Self-paced learning for long-term tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2013:2379-2386. [16] DANELLJAN M,HAGER G,SHAHBAZ KHAN F,et al.Adaptive decontamination of the training set:a unified formulation for discriminative visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1430-1438. [17] CHOI J,CHANG H J,FISCHER T,et al.Context-aware deep feature compression for high-speed visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:479-488. [18] DANELLJAN M,BHAT G,SHAHBAZ KHAN F,et al.Eco:efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:6638-6646. [19] WANG X,LI C,LUO B,et al.Sint++:robust visual tracking via adversarial positive instance generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4864-4873. [20] HAN Y,ZHANG P,HUANG W,et al.Robust visual tracking based on adversarial unlabeled instance generation with label smoothing loss regularization[J].Pattern Recognition,2020,97:107027. [21] ZHANG X,WANG M,WEI J.Robust visual tracking based on adversarial fusion networks[C]//2018 37th Chinese Control Conference(CCC),2018:9142-9147. [22] LI F,TIAN C,ZUO W,et al.Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4904-4913. [23] YUAN D,SHU X,HE Z.TRBACF:learning temporal regularized correlation filters for high performance online visual object tracking[J].Journal of Visual Communication and Image Representation,2020,72:102882. [24] FAN J,SONG H,ZHANG K,et al.Complementary tracking via dual color clustering and spatio-temporal regularized correlation learning[J].IEEE Access,2018,6:56526-56538. [25] XU T,FENG Z H,WU X J,et al.Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J].IEEE Transactions on Image Processing,2019,28(11):5596-5609. [26] ZHANG Y,LIU G,ZHANG H,et al.Robust visual tracker combining temporal consistent constraint and adaptive spatial regularization[J].Neural Computing and Applications,2021:1-20. [27] DAI K,WANG D,LU H,et al.Visual tracking via adaptive spatially-regularized correlation filters[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4670-4679. [28] NAM H,BAEK M,HAN B.Modeling and propagating cnns in a tree structure for visual tracking[J].arXiv:1608.07242,2016. [29] WANG N,ZHOU W,TIAN Q,et al.Multi-cue correlation filters for robust visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4844-4853. [30] YANG T,CHAN A B.Learning dynamic memory networks for object tracking[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:152-167. [31] DANELLJAN M,HAGER G,SHAHBAZ KHAN F,et al.Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:4310-4318. [32] BERTINETTO L,VALMADRE J,GOLODETZ S,et al.Staple:complementary learners for real-time tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1401-1409. [33] LI B,WU W,WANG Q,et al.SiamRPN++:evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4282-4291. [34] BAI S,HE Z,DONG Y,et al.Multi-hierarchical independent correlation filters for visual tracking[C]//2020 IEEE International Conference on Multimedia and Expo(ICME),2020:1-6. [35] CHOI J,KWON J,LEE K M.Deep meta learning for real-time target-aware visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:911-920. [36] QI Y,ZHANG S,ZHANG W,et al.Learning attribute-specific representations for visual tracking[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019,33(1):8835-8842. [37] LI X,MA C,WU B,et al.Target-aware deep tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:1369-1378. [38] MA C,YANG X,ZHANG C,et al.Long-term correlation tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:5388-5396. [39] WANG M,LIU Y,HUANG Z.Large margin object tracking with circulant feature maps[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4021-4029. [40] LIU T,WANG G,YANG Q.Real-time part-based visual tracking via adaptive correlation filters[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:4902-4912. [41] LUKE?I? A,ZAJC L ?,VOJí? T,et al.Fucolot—a fully-correlational long-term tracker[C]//Asian Conference on Computer Vision.Cham:Springer,2018:595-611. [42] LUKEZIC A,VOJIR T,ˇCEHOVIN ZAJC L,et al.Discriminative correlation filter with channel and spatial reliability[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:6309-6318. [43] ZHU Z,HUANG G,ZOU W,et al.UCT:learning unified convolutional networks for real-time visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops,2017:1973-1982. [44] ZHU G,WANG J,WU Y,et al.MC-HOG correlation tracking with saliency proposal[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2016. [45] SUPANCIC J,RAMANAN D.Tracking as online decision-making:learning a policy from streaming videos with reinforcement learning[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:322-331. [46] DAI K,ZHANG Y,WANG D,et al.High-performance long-term tracking with meta-updater[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:6298-6307. [47] HELD D,THRUN S,SAVARESE S.Learning to track at 100 fps with deep regression networks[C]//European Conference on Computer Vision.Cham:Springer,2016:749-765. [48] BERTINETTO L,VALMADRE J,HENRIQUES J F,et al.Fully-convolutional Siamese networks for object tracking[C]//European Conference on Computer Vision.Cham:Springer,2016:850-865. [49] VALMADRE J,BERTINETTO L,HENRIQUES J,et al.End-to-end representation learning for correlation filter based tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2805-2813. [50] LI B,YAN J,WU W,et al.High performance visual tracking with Siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8971-8980. [51] HENRIQUES J F,CASEIRO R,MARTINS P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,37(3):583-596. [52] DANELLJAN M,ROBINSON A,KHAN F S,et al.Beyond correlation filters:learning continuous convolution operators for visual tracking[C]//European Conference on Computer Vision.Cham:Springer,2016:472-488. [53] CHOI J,KWON J,LEE K M.Visual tracking by reinforced decision making[J].Computer Vision & Image Understanding,2017:10-19. [54] ZHU Z,WU W,ZOU W,et al.End-to-end flow correlation tracking with spatial-temporal attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:548-557. [55] DANELLJAN M,BHAT G,KHAN F S,et al.Atom:accurate tracking by overlap maximization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4660-4669. [56] LIANG Y,WU Q,LIU Y,et al.Robust correlation filter tracking with shepherded instance-aware proposals[C]//Proceedings of the 26th ACM International Conference on Multimedia,2018:420-428. [57] CHENG X,ZHANG Y,ZHOU L,et al.Visual tracking via auto-encoder pair correlation filter[J].IEEE Transactions on Industrial Electronics,2019,67(4):3288-3297. [58] HONG Z,CHEN Z,WANG C,et al.Multi-store tracker(muster):a cognitive psychology inspired approach to object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:749-758. [59] LEE H,CHOI S,KIM C.A memory model based on the Siamese network for long-term tracking[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops,2018. [60] XIE Y,XIAO J,HUANG K,et al.Correlation filter selection for visual tracking using reinforcement learning[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,30(1):192-204. [61] YANG T,CHAN A B.Recurrent filter learning for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops,2017:2010-2019. [62] ZHANG L,GONZALEZ-GARCIA A,WEIJER J,et al.Learning the model update for siamese trackers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:4010-4019. |
[1] | 马珺,王昱皓. 结合自适应更新策略和再检测技术的跟踪算法[J]. 计算机工程与应用, 2021, 57(9): 217-224. |
[2] | 李震霄,孙伟,刘明明,郑丽丽,陈劭颖. 交通监控场景中的车辆检测与跟踪算法研究[J]. 计算机工程与应用, 2021, 57(8): 103-111. |
[3] | 王玲,王家沛,王鹏,孙爽滋. 融合注意力机制的孪生网络目标跟踪算法研究[J]. 计算机工程与应用, 2021, 57(8): 169-174. |
[4] | 万琴,朱晓林,陈国泉,肖岳平. 分层联合双边滤波的深度图修复算法研究[J]. 计算机工程与应用, 2021, 57(6): 184-190. |
[5] | 李松江,吴宁,王鹏,李海兰. 基于改进Cascade RCNN的车辆目标检测方法[J]. 计算机工程与应用, 2021, 57(5): 123-130. |
[6] | 李佐龙,王帮海,卢增. 多尺度特征融合重建的行人检测方法[J]. 计算机工程与应用, 2021, 57(4): 176-182. |
[7] | 崔洲涓,安军社,陈长龙,崔天舒. 基于PYNQ框架的深度卷积特征异构跟踪系统[J]. 计算机工程与应用, 2021, 57(4): 120-126. |
[8] | 邱守猛,谷宇章,袁泽强. 基于双分支孪生网络的目标跟踪[J]. 计算机工程与应用, 2021, 57(24): 135-143. |
[9] | 林淑彬,吴贵山,许甲云,杨文元. 多帧监督的相关滤波无人机目标跟踪[J]. 计算机工程与应用, 2021, 57(24): 152-160. |
[10] | 杨鲁月,张树美,赵俊莉. 基于并行Gan的有遮挡动态表情识别[J]. 计算机工程与应用, 2021, 57(24): 168-178. |
[11] | 陈富健,谢维信,夏婷. 基于LCT+的自适应抗遮挡目标跟踪算法[J]. 计算机工程与应用, 2021, 57(22): 190-198. |
[12] | 武哲纬,周世杰,刘启和. 运算资源受限环境下的目标跟踪算法综述[J]. 计算机工程与应用, 2021, 57(21): 24-40. |
[13] | 王蓓,陈金广,王明明. 复杂场景下的改进核相关滤波跟踪算法[J]. 计算机工程与应用, 2021, 57(2): 198-208. |
[14] | 徐遐龄,刘涛,田国辉,于文娟,肖大军,梁陕鹏. 有遮挡环境下的人脸识别方法综述[J]. 计算机工程与应用, 2021, 57(17): 46-60. |
[15] | 李晓花,苏骏,李秀秀. 强干扰环境单观测站水下纯方位多目标跟踪[J]. 计算机工程与应用, 2021, 57(17): 253-259. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||