计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (23): 91-97.DOI: 10.3778/j.issn.1002-8331.2012-0072
黄晶晶,王建宏
HUANG Jingjing, WANG Jianhong
摘要:
由一阶因果、反因果微分的定义推导出Caputo分数阶因果、反因果微积分,并在此基础上定义Caputo分数阶非因果微积分。将它们分别应用于BP神经网络的反向传播过程中对权值进行处理,产生了Caputo分数阶因果、反因果和非因果BP神经网络模型。为了方便对比,将这些模型分别对波士顿房屋数据集和MNIST数据集进行处理。模拟结果表明:在整数阶因果、反因果和非因果的模型之间,整数阶非因果模型的结果最好;分数阶因果、反因果和非因果模型分别与其相应的整数阶模型进行比较,得出分数阶模型得到的准确率比整数阶的高;在分数阶因果、反因果和非因果的模型之间,非因果的准确性最高。总的来说,Caputo分数阶因果、反因果和非因果微积分都对传统BP神经网络有优化作用,尤其是分数阶非因果微积分的优化效果最好。