计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 241-246.DOI: 10.3778/j.issn.1002-8331.2007-0279
王海涌,李海洋,高雪娇
WANG Haiyong, LI Haiyang, GAO Xuejiao
摘要:
针对当前图像修复领域存在结构丢失、纹理模糊、不能够充分利用背景信息生成内容风格一致的填充区域的问题,在编码解码网络基础上,提出带有多尺度结构信息与注意力机制的共享修复模型。在生成阶段,嵌入多尺度结构信息为图像修复提供前提条件。同时使用多尺度注意力机制,从背景信息中获取相关信息,并经过细化,生成与图像相关的内容和结构;使用PatchGAN和固定权重VGG-16分类器作为鉴别器,并将风格损失和感知损失引入到对抗网络中,以实现所生成图像的风格一致性。在Places2数据集上与当前主流的图像修复算法进行对比,实验结果表明该算法与其他算法相比能较好地恢复图像结构的细节信息,生成更清晰、精细的修复结果。