计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 92-101.DOI: 10.3778/j.issn.1002-8331.2011-0409
李守玉,何庆,杜逆索
LI Shouyu, HE Qing, DU Nisuo
摘要:
针对原始蝴蝶优化算法容易陷入局部最优解、收敛速度慢及寻优精度低等问题,提出分段权重和变异反向学习的蝴蝶优化算法。通过飞行引领策略来矫正邻域内蝴蝶的自身飞行,降低盲目飞行,增强算法跳出局部最优的能力;引入分段权重来平衡全局勘探及局部开发的能力,进而实现蝴蝶位置动态更新;使用变异反向学习对位置进行扰动,增加种群多样性以及提高算法的收敛速度。通过对9个测试函数和部分CEC2014函数及Wilcoxon秩和检验来评估改进算法的寻优能力,实验结果表明改进算法的收敛速度及寻优精度得到了极大改进。