计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (9): 103-108.DOI: 10.3778/j.issn.1002-8331.2004-0123
王永贵,李倩玉
WANG Yonggui, LI Qianyu
摘要:
针对传统基于单分类的推荐算法容易陷入“单指标最优”的困境和推荐精度低的问题,提出一种融合K-最近邻(KNN)和Gradient Boosting(GBDT)的协同过滤推荐算法。该算法利用K-最近邻法过滤出目标用户的多组候选最近邻居集,并综合集成学习的优点,采用多分类器对多组推荐结果进行集成。在相似度计算公式中引入了若只有单个用户评价的物品权重,以此获得更多目标用户的潜在信息。实验结果表明,该算法有效缓解了目标用户与候选最近邻居集之间的数据集稀疏性,提升了推荐精度。