计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (6): 191-199.DOI: 10.3778/j.issn.1002-8331.2007-0052
魏玮,杨茹,朱叶
WEI Wei, YANG Ru, ZHU Ye
摘要:
基于深度学习的遥感图像检测在地球资源调查、军事侦察、环境监测等领域有着广泛的应用,更精准、高效的目标检测算法是目前遥感图像检测研究的热点和难点。提出一种改进的CenterNet遥感图像检测算法,对遥感图像进行预处理,以适应CenterNet网络,提高网络对遥感图像的检测有效性;对原网络进行改进,将残差模块中的标准卷积替换成深度可分离卷积,有效降低网络计算量,减少冗余;同时加入注意力机制,抑制无用信息,提高网络的检测准确率。针对遥感图像观测面积大而目标相对较小,目标尺寸差异较大且分布不均匀的特点来说,降低了目标的误检率和漏检率。实验结果表明,改进的CenterNet算法相较于原始CenterNet算法的效果有明显提升,证明了改进算法的鲁棒性。