计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (20): 98-103.DOI: 10.3778/j.issn.1002-8331.2001-0272
方炯焜,陈平华,廖文雄
FANG Jiongkun, CHEN Pinghua, LIAO Wenxiong
摘要:
文本分类有着广泛的应用,对其分类算法的研究也一直备受关注。但是,传统文本分类算法普遍存在文本特征向量化维度过高、没有考虑关键词之间语义关系、训练参数过多等问题,这些都将影响到分类准确率等性能。针对这些问题,提出了一种结合词向量化与GRU的文本分类算法。对文本进行预处理操作;通过GloVe进行词向量化,尽可能多地蕴含文本语义和语法信息,同时降低向量空间维度;再利用GRU神经网络模型进行训练,最大程度保留长文本中长距离词之间的语义关联。实验结果证明,该算法对提高文本分类性能有较明显的作用。