计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (15): 30-36.DOI: 10.3778/j.issn.1002-8331.2001-0347
黄东晋,蒋晨凤,韩凯丽
HUANG Dongjin, JIANG Chenfeng, HAN Kaili
摘要:
合理的路线选择是智能体三维路径规划研究领域的难点。现有路径规划方法存在不能很好地适应未知地形,避障形式单一等问题。针对这些问题,提出了一种基于LSTM-PPO的智能体三维路径规划算法。利用虚拟射线探测仿真环境,并将收集到的状态空间和动作状态引入长短时记忆网络。通过额外的奖惩函数和好奇心驱动让智能体学会跳跃通过低矮障碍物,避开大型障碍物。利用PPO算法的截断项机制使得规划策略更新的幅度更加优化。实验结果表明,该算法是可行的,能够更加智能合理地选择路线,很好地适应存在多样障碍物的未知环境。