计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (13): 137-142.DOI: 10.3778/j.issn.1002-8331.1903-0243
李丹
LI Dan
摘要:
针对结构稀疏子空间聚类不能很好地把握数据相似度一致性的问题,提出一种新的子空间聚类优化模型;结构加权相关自适应子空间聚类(Structured Weighted Correlation Adaptive Subspace Clustering,SWCASC)模型。该模型引入数据点的相关性对表示系数施加显式惩罚,同时利用分割和相似度的依赖关系,引入子空间结构范数。该模型使得数据类别标签具有一致性,相似度矩阵具有稀疏性和一致性,并具有自适应性。相似度矩阵的稀疏性有利于将不同子空间的数据分离,而一致性有利于将同一子空间的数据聚集。实验结果表明,该模型获得了理想的聚类效果,并优于其他方法。