计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (11): 179-184.DOI: 10.3778/j.issn.1002-8331.1904-0244
周维,陈听海,邱宝鑫
ZHOU Wei, CHEN Tinghai, QIU Baoxin
摘要:
针对视觉目标跟踪的遮挡问题,在TLD算法的基础上,引入特征重检环节,解决发生遮挡时因目标外观相似、背景聚类造成错判,提出了一种基于特征重检的抗遮挡目标跟踪研究方法(TLD-D),采用跟踪、检测、学习、再检测的策略。跟踪与检测相结合,对锁定的目标进行学习,获取目标最新的外观特征;当发生遮挡时,则启用特征重检环节,提取遮挡过程的“开始发生遮挡”和“遮挡结束”两个关键帧,然后在特征重检环节选用SIFT特征进行双向匹配标定目标,确保重新标定的目标为原被遮挡的跟踪目标, 即“再检测”。OTB基准集上实验结果表明,与TLD算法、同类TLD改进算法以及其他经典跟踪算法相比较,TLD-D算法抗遮挡能力更强,鲁棒性更强,能够对目标长时间稳定跟踪。