计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (17): 180-184.DOI: 10.3778/j.issn.1002-8331.1902-0155
孙萍,胡旭东,张永军
SUN Ping, HU Xudong, ZHANG Yongjun
摘要: 利用卷积神经网络进行目标检测时,提取的卷积特征具有很强的平移不变性,这将削弱模型的定位性能。事实上,目标对象通常具有不同的子区域特征和宽高比特性,但在目前流行的两阶段目标检测框架中,很少考虑这些具有平移尺度敏感性的特征成分。为了优化模型的特征表达,将在两阶段目标检测框架中引入与子区域特征和宽高比特性相关的注意力特征库,并生成注意力特征图对原始的ROI池化特征进行优化。另外,在注意力特征图的辅助下,模型特征维度可以有效地进行缩减。实验结果表明,引入注意力模块后,模型的检测精度和检测速度有明显提升。