计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (24): 97-102.DOI: 10.3778/j.issn.1002-8331.1805-0241
张 震,曹天杰
ZHANG Zhen, CAO Tianjie
摘要: 针对Android恶意代码的混淆、隐藏、加密情况以及现有方法的检测能力不足问题,提出了一种基于恶意应用行为特征值序列的动态检测方法。首先利用远程注入技术将动态检测的模块注入到Android系统的Zygote进程中,执行内联挂钩来监测应用中的重要函数。然后,通过函数监听得到Android应用的重要行为;进而,按照行为的特征将其量化为特征值,再按照时间顺序将行为特征值排为序列,得到行为特征值序列。通过利用支持向量机来训练5 560个恶意样本,得到恶意应用家族的行为特征值序列;最后利用此序列与被检测应用的序列进行相似度比较,判断应用是否为恶意应用。在恶意应用动态检测方面的正确率可达到95.1%,以及只增加被检测的应用21.9 KB内存。实验结果表明,所提方法能够正常检测经过代码混淆、代码加密、代码隐藏的恶意应用,提高了恶意应用检测的正确率,所占内存空间减少,有效提升检测效果。