计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (22): 16-22.DOI: 10.3778/j.issn.1002-8331.1808-0057
贾 涵,连晓峰
JIA Han, LIAN Xiaofeng
摘要: 布谷鸟搜索算法(CS)是一种受生物启发的新型群智能优化算法。针对CS算法在搜索后期收敛速度慢并且寻优能力弱的问题,提出一种发现概率参数自适应调节的布谷鸟改进算法(APCS)。首先利用Pareto最优解计算出状态判别参数[Ps],其次通过探索-开发平衡状态计算出平衡参数[Peb],最终实现鸟蛋的被发现概率[Pa]的自适应动态调整。最后通过8个基准函数对两种算法的性能在10维和30维的情况下分别进行了对比与分析,结果表明,APCS算法的收敛速度、寻优能力、稳定性和计算时间都优于CS算法。