计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (20): 54-61.DOI: 10.3778/j.issn.1002-8331.1709-0423
许兴阳,刘宏志
XU Xingyang, LIU Hongzhi
摘要: 为进一步提高卷积神经网络的训练速度,减少训练成本,建立了量子门组卷积神经网络模型(Quantum Gate Convolutional Neural Network,QGCNN)。为了构建QGCNN网络结构,依据传统CNN结构的特点,给出卷积算术线路(Convolutional Arithmetic Circuit,ConvAC)的定义。用张量分解来说明ConvAC的权值系数之间的关系,为构建QGCNN提供理论依据。将QGCNN分为输入表示层、隐藏层和输出层,在此基础上实现对数据进行量子编码,利用量子门组完成数据初始化,网络参数更新等操作。将QGCNN应用到数字手写体识别中,实验结果表明,该方法在手写体识别的准确率和收敛速度上有不错的效果。