计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (23): 153-158.DOI: 10.3778/j.issn.1002-8331.1606-0174
闫晓斐1,强 彦1,原 杰2
YAN Xiaofei1, QIANG Yan1, YUAN Jie2
摘要: 针对传统计算机辅助诊断中肺结节的特征提取方法依靠人工设计、操作复杂、识别率低等问题,提出了一种基于混合受限玻尔兹曼机的肺结节良恶性诊断方法。首先采用多层无监督卷积受限玻尔兹曼机自动对肺结节图像进行特征学习,然后利用分类受限玻尔兹曼机对获得的特征进行良恶性分类。为避免分类受限玻尔兹曼机在训练中出现的特征同质化问题,引入了交叉熵稀疏惩罚对其进行优化。实验结果表明,该方法有效避免了手动特征提取的复杂性,在肺结节良恶性分类的准确率、敏感性、特异性、ROC曲线下面积值上均优于传统诊断方法。