计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (15): 237-244.DOI: 10.3778/j.issn.1002-8331.2005-0095
徐麒皓,李波
XU Qihao, LI Bo
摘要:
基于深度学习网络在医学图像分割方面取得了很多成果。由于类圆形的肺结节不同于血管和大部分肺部结构呈扁平状,因此通过对U-Net进行扩展,提出一种带有多视图密集卷积的双向LSTM U-Net网络来消除血管和肺内组织结构以检测结节。与U-Net在跳跃连接中进行级联不同,改进双向LSTM网络将编码路径中提取特征图与解码卷积层进行非线性结合。为了加强特征传播和鼓励特征复用,在编码路径的最后一个卷积层采用密集卷积,最后使用批处理规范化(BN)来加速网络的收敛速度。实验结果表明该模型有效地提高了肺结节分割的准确率,对LUNA16和阿里巴巴天池竞赛数据集中每个候选样本提取轴位、冠状和矢状视图后训练的MIoU达到了90.1%。