计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (18): 192-198.DOI: 10.3778/j.issn.1002-8331.1612-0472
祝严刚,张桂梅
ZHU Yangang, ZHANG Guimei
摘要: 非局部均值滤波算法(Non-Local Means,NLM)有良好的去噪效果,且能保持图像细节。但其复杂度过高引起效率低下,在噪声增大时去噪精度明显下降。快速非局部均值滤波(Fast Non-Local Means,FNLM)虽然提高了算法的效率,但去噪效果没有明显改善,在噪声增大时去噪效果仍不理想。针对该问题,提出一种新的非局部均值滤波算法,算法将Turky型函数与指数型相结合,提出一种新的指数-Turky型权值核函数,替代原NLM算法和FNLM算法中的指数型核函数,同时综合了结构相似性(Structural Similarity,SSIM)和欧氏距离来衡量图像邻域间的相似性,从而使得权值的选取更加合理,有效排除图像中不相似邻域的干扰,提高了算法的去噪性能。通过对添加不同噪声水平的高斯噪声图像进行实验,结果表明提出的算法在去噪性能上与NLM和FNLM相比有较大提高,尤其对于噪声较大的图像效果更为显著,在去噪效率上与NLM相比有明显提高,与FNLM算法的时间复杂度相当,时耗接近略有降低。