计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (10): 187-192.DOI: 10.3778/j.issn.1002-8331.1512-0234
曹 洁1,2,罗菊香1,李晓旭1
CAO Jie1,2, LUO Juxiang1, LI Xiaoxu1
摘要: 基于概率主题模型的图像标注方法旨在通过学习图像语义进行图像标注,近年来倍受研究人员关注。考虑到类别对图像标注可提供有价值的信息,例如,“高楼”类图像,出现“天空”、“摩天楼”的可能性大于“海水”和“沙滩”。而“海岸”类图像出现“海水”、“沙滩”的可能性要大于“天空”和“摩天楼”。在Corr-LDA模型的基础上利用图像类别来改进图像的标注性能,提出了一个融入类别信息的图像标注概率主题模型。为该模型推导了一个基于变分EM的参数估计算法,并给出了使用该模型标注图像的方法。在LabelMe和UIUC-Sport两个真实数据集上验证了提出模型的标注性能要高于其他相比较模型。