计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (9): 11-16.DOI: 10.3778/j.issn.1002-8331.1612-0111
胡明伟1,丁彦蕊2,3
HU Mingwei1, DING Yanrui2,3
摘要: 血管紧张素转换酶抑制剂(ACEI)对高血压的治疗具有重要意义。基于从结构复杂的化合物数据库中构建的候选小分子数据集,采用分子对接技术从数据集中筛选出样本构建分类模型。分别采用支持向量机、[K]近邻、决策树、随机森林和贝叶斯方法建立血管紧张素转换酶潜在抑制剂和非抑制剂的分类模型。经结果对比,支持向量机相比于其他方法有更高的预测率,其中模型总体预测率和相关系数分别为82.4%和0.653。研究表明,支持向量机方法对于虚拟筛选血管紧张素转换酶抑制剂具有良好的效果。