计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (8): 61-67.DOI: 10.3778/j.issn.1002-8331.1510-0153
王伟文,方 环,张传林
WANG Weiwen, FANG Huan, ZHANG Chuanlin
摘要: 针对拉普拉斯特征映射的新增样本点延拓问题,提出一种基于邻域信息的新增样本点延拓方法:假设新增样本点与邻域保持线性关系,使用稀疏编码方法求解线性系数,再由这些系数在低维空间重构得到新增样本点的低维表示。使用1-NN分类算法对新增样本点的低维表示进行分类,实验结果表明,与基于全局信息的稀疏编码重构方法相比,基于邻域信息的稀疏编码重构算法使用更少的时间取得更高的分类准确率,说明该方法的有效性。此外,该方法可以推广至其他非线性降维方法的新增样本点问题。