计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (1): 49-53.DOI: 10.3778/j.issn.1002-8331.1603-0036

• 理论与研发 • 上一篇    下一篇

基于小波降噪数据预处理的硬件木马检测优化

李  衡1,赵毅强2,杨瑞霞1,何家骥2,李跃辉2,杨  松2   

  1. 1.河北工业大学 电子信息工程学院,天津 300401
    2.天津大学 电子信息工程学院,天津 300072
  • 出版日期:2017-01-01 发布日期:2017-01-10

Hardware Trojan detection optimization based on wavelet de-noising data preprocessing

LI Heng1, ZHAO Yiqiang2, YANG Ruixia1, HE Jiaji2, LI Yuehui2, YANG Song2   

  1. 1.School of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China
    2.School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
  • Online:2017-01-01 Published:2017-01-10

摘要: 针对硬件木马检测中数据预处理效果不佳的问题,提出了小波变换的数据降噪预处理的硬件木马检测的优化方法。在对提取的功耗信息进行小波变换数据降噪预处理基础上,利用马氏距离进行硬件木马的判别。对基于FPGA实现的含有木马的ISCAS’89系列的基准电路进行检测,并进行后续的数据处理实验。实验结果表明,采用小波变换的数据降噪预处理的硬件木马检测优化方法,可检测出占母本电路面积为0.24%的硬件木马。

关键词: 硬件木马, 小波降噪, 数据预处理, 马氏距离, 旁路分析, 硬件木马检测

Abstract: Aiming at the problem of poor data preprocessing in hardware Trojan detection, the optimized hardware Trojan detection method of wavelet transform of the noise reduction data preprocessing is proposed. The obtained power consumption information is preprocessed by wavelet de-noising, then the data is processed by Markov distance to identify hardware Trojan. Afterwards, ISCAS’89 series benchmark circuits containing Trojans are implemented on FPGA, then the power information is processed. The experimental results show that this method can detect hardware Trojan with an area ratio of 0.24%.

Key words: hardware Trojan, wavelet de-noising, data pre-processing, Markov distance, side-channel analysis, hardware Trojan detection