计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (18): 148-153.
郭红想,严 军,王典洪,余蓓蓓
GUO Hongxiang, YAN Jun, WANG Dianhong, YU Beibei
摘要: 为了提高脑思维任务分类精度,提出了一种基于小波包分解和多分类器投票组合的运动想象任务分类方法。该方法利用小波包分解对经过预处理的脑电信号进行分解,提取所有频带上的相对小波包能量特征;根据不同脑思维任务下左右半脑各通道间的差异性对C3、C4两通道求取特定频带上的小波包系数的L-2范数作为特征;采用基于投票策略的组合分类器对两种联合特征进行分类,得到了92.85%的识别精度。实验结果表明,联合特征向量较好地反映了左右手运动想象脑电信号的事件相关去同步(ERD)和事件相关同步(ERS)的本质特性;组合分类器识别效果优于单一分类器。