摘要: 针对异步运动想象脑机交互(Brain Computer Interface,BCI)系统中空闲状态检测和不同想象任务分类的问题,在小波变换提取脑电信号特征基础上,设计了阈值判别结合支持向量机的二级分类器。由于大脑想象单侧肢体运动时,会导致同侧和对侧运动皮层脑区EEG信号在μ节律上分别出现事件相关同步和去同步,而大脑处于空闲状态时则无此现象。基于大脑活动的这一特性,提出了小波能量阈值判别法,进行空闲状态检测,径向基核函数和交叉检验的支持向量机方法,进行左、右手运动想象任务分类。结果表明该分类器最佳分类正确率达到了80.7%,且整个时间消耗仅为3.0 s,可以较好地满足异步在线运动想象BCI系统的应用。